莱布尼茨三角形是什么?

来自:    更新日期:早些时候
莱布尼茨三角形的规律是什么?~

世界上著名的莱布尼茨三角形如图所示:
1/1
1/2 1/2
1/3 1/6 1/3
1/4 1/12 1/12 1/4
1/5 1/20 1/30 1/20 1/5
1/6 1/30 1/60 1/60 1/30 1/6
1/7 1/42 1/105 1/140 1/105 1/42 1/7


则排在第10行从左边数第3个位置上的数是( )
A.1/132 B.1/360 C.1/495 D.1/660

B.1/360
其实这个三角的规律就是下一行的第1和第2个数相加就等于上一行的第1个数,下一行的第2和第3个数相加就等于上一行的第2个数,以此类推,(图形可成等腰三角分布)
从上面可看得出来每行第一个数的分母就是这行的行数,第8行的第1个数是1/8,第9行的第一个数是1/9,第10行的第1个数是1/10.
再按照上面的规律,第9行的第2个数是等于第8行的第1个数减去第9行的第一个数(1/8-1/9)得1/72.
第10行的第2个数就等于第9行的第1个数减去第10行的第1数(1/9-1/10)得1/90
则第10行的第3个数就等于第9行的第2个数减去第10行的第2个数(1/72-1/90)得1/360

莱布尼茨三角形的规律

1
1/2 1/2
1/3 1/6 1/3
1/4 1/12 1/12 1/4
1/5 1/20 1/30 1/20 1/5
下面两个的和是上面那个
1/30=1/12-1/20

1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列
0,1,4,9 16,…
的性质,例如它的第一阶差为
1,3,5,7,…,
第二阶差则恒等于
2,2,2,…
等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列.
1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,…)倒数的级数之和
莱布尼茨圆满地解决了这一问题,他是这样计算的:
初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献.
对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristic triangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ 则是“P和 Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值.
利用这个特征三角形,他很快就意识到两个问题:
(1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx.
(2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和.
有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”
根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differential triangle)其中 ds2=dx2+dy2.
利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式
这一公式是从几何图形中推导出来的,经常被他用来求面积.
1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式
同时,他还给出了曲线长度公式
在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum 和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式
1676年11月,他得出了公式
其中n是整数或分数(n≠-1).
莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.
由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系.
莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式)
(A为曲线f下的图形的面积.)
于1693年给出了这个定理的证明.以前,微分和积分作为两种数学运算、两类数学问题,是分别地加以研究的.卡瓦列里、巴罗、沃利斯等许多人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果是孤立、不连贯的.虽然他们已开始考虑微分和积分之间的关系,然而只有莱布尼茨和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者的内在的直接联系:微分和积分是互逆的两种运算.而这正是建立微积分学的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则.
莱布尼茨于1684年10月发表在《教师学报》(Acta erudito-rum)上的论文,题目是“一种求极大值与极小值和求切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算”(Nova Methodus pro Maximis et Minimis,itemque tangentibus,quae necfractas,necirrationales quantitates moratur,et singularepro illis Calculi genus),在数学史上被公认为是最早发表的微积分文献.
早在1677年7月11日前后及11月左右,莱布尼茨明确定义了dy为函数微分,给出了dy的演算规则:
“如果a是给定的常数,则da=0,dax=adx;
加法和减法 v=z—y+w+x,dv=dz-dy+dw+dx;
乘法 y=vx,dy=vdx+xdv
在1676—1677年的手稿中,他利用特征三角形分析了曲线切线的变化情况:对于曲线v=v(x),当dv与dx之比为无穷大时,切线垂直于坐标轴(x轴).当dv与dx之比等于0时,切线平行于x轴,当dv=dx≠0时,则切线与坐标轴成45°角,他指出,对于曲线v,当dv=0时,“在这个位置的v,明显地就是极大值(或极小值)”,他详细讨论了当dv<0,而变成dv=0后又dv<0时取极大值,反之则取极小值的情形.他还给出了拐点——曲线的凹凸情况发生变法的条件是d2v=0.
以后,莱布尼茨具体求出了各种各样复杂函数的微商(导数).1686年,给出了对数函数,指数函数的微商.1695年求出了y=xx的微商dy=xx(1+lnx),等等.
他引入了n阶微分的符号dn,并且给出了高阶微分的“莱布尼茨法则”:
其中
n!=1×2×3×…×(n-1)×n.
莱布尼茨在积分方面的成就,后来比较集中地写在1686年5月发表在《教师学报》上的一篇论文中,题为“潜在的几何与不可分量和无限的分析”(De Geometria recondita et Analysi Indivisi-bilium atque Infinitorum).
品中出现了积分符号.同年,他引入了空间曲线的“密切”(osculating)这一术语,并给出了曲率ρ公式:
其中R为曲率半径.
1692年和1694年,他给出了求一族曲线 f(x,y,α)=0(α为曲线族参数)包络的普遍方法:在

中消去α.实际上,用微积分方法研究几何在微积分奠基者(牛顿、莱布尼茨等)那里已经开始了.切线、包络等几何问题在莱布尼茨手中是与微积分连在一起的.
无穷级数 在微积分的早期研究中,有些函数如指数函数等超越函数的处理相当困难,然而人们发现,若用它们的级数来处理,则非常有成效.因此,无穷级数从一开始就是莱布尼茨、牛顿等人微积分工作的一个重要部分.有时使用无穷级数是为了计算一些特殊的量,如莱布尼茨曾用无穷级数表达式计算π(圆周率).
在求面积的过程中,通过无穷级数表示圆在第一象限的面积,他得到了π的一个十分漂亮的表达式


莱布尼茨三角形是什么?视频

相关评论:
  • 15049478808莱布尼茨三角形是什么?
    吉烁苇1\/4 1\/12 1\/12 1\/4 1\/5 1\/20 1\/30 1\/20 1\/5 下面两个的和是上面那个 1\/30=1\/12-1\/20

  • 15049478808莱布尼茨三角形初步思想
    吉烁苇莱布尼茨在其研究中,通过一个关键的发现,即特征三角形,解决了两个核心问题。首先,他发现曲线的切线斜率与纵坐标变化与横坐标变化的比例有关,当这些变化趋近于无穷小时,这个比例就是dy\/dx,对应于曲线y在点T处的切线。例如,比较图1中的△PQR与△STU,它们相似,从而推导出切线斜率的公式dy\/dx=Tu...

  • 15049478808什么是“莱布尼茨”三角形?
    吉烁苇世界上著名的莱布尼茨三角形如图所示:1\/1 1\/2 1\/2 1\/3 1\/6 1\/3 1\/4 1\/12 1\/12 1\/4 1\/5 1\/20 1\/30 1\/20 1\/5 1\/6 1\/30 1\/60 1\/60 1\/30 1\/6 1\/7 1\/42 1\/105 1\/140 1\/105 1\/42 1\/7 则排在第10行从左边数...

  • 15049478808三角形莱布尼茨公式怎么推导
    吉烁苇三角形莱布尼茨公式是用来计算三角形内任意一点的重心坐标的公式。其推导过程如下:假设三角形的三个顶点分别为 $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$,三角形的重心为 $G(x,y)$,则有:overrightarrow{OG}=frac{1}{3}(overrightarrow{OA}+overrightarrow{OB}+overrightarrow{OC...

  • 15049478808莱布尼茨三角形得出公式
    吉烁苇(1+nx)^(1\/n)>莱布尼茨在微积分的研究中,尤其是在微分和积分之间建立了深刻联系。他的工作受到了巴罗著作的影响,并通过引入特征三角形,他洞察到导数(即求切线)和积分(即求和)之间存在着本质上的相反关系。在1675年10月29日的手稿中,他注意到面积通过微分转化为长度,这促使他开始探索积分符号...

  • 15049478808世界上著名的莱布尼茨三角形的规律是什么?
    吉烁苇莱布尼茨三角形的规律是:上一行的数等于下一行与其相邻的两个数之和。图形见百度百科:http:\/\/baike.baidu.com\/view\/2875644.html

  • 15049478808莱布尼茨三角形规律
    吉烁苇1672年,莱布尼茨作为高级外交官被派往巴黎,在那里他遇到了一位荷兰科学家,名叫克里斯蒂安.惠更斯。那时莱布尼茨在数学上还是个初出茅庐的新手,惠更斯指导他研究的一个问题就是求三角形数的倒数和。莱布尼茨用他超凡的数学观察力,非常巧妙地解决了惠更斯的挑战。首先,把等式两边都除以2,得到,每一项的...

  • 15049478808莱布尼茨三角形简述
    吉烁苇在1666年,数学家莱布尼茨撰写了名为"论组合术"(De ArtCombinatoria)的文章,他主要探讨了平方数序列,如0, 1, 4, 9, 16, ... 的性质。他观察到,这个序列的特性十分独特:第一阶差(即相邻项的差)呈现为1, 3, 5, 7, ...,而第二阶差恒定为2, 2, 2, ...。莱布尼茨发现,自然数...

  • 15049478808莱布尼茨三角形的得出公式
    吉烁苇1676年11月,他得出了公式其中n是整数或分数(n≠-1).莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定...

  • 15049478808求莱布尼茨三角的规律
    吉烁苇布莱尼茨三角: 1\/1 1\/2 1\/2 1\/3 1\/6 1\/3 1\/4 1\/12 1\/12 1\/4 1\/5 1\/20 1\/30 1\/20 1\/5 1\/6 1\/30 1\/60 1\/60 1\/30 1\/6 1\/7 1\/42 1\/105 1\/140 1\/105 1\/42 1\/7 ··· 规律:由三个数组成的三角形,顶尖的数等于另外两个数的和 即F[i,j]=F[i-1,j...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网