谁能给我详细解释一下宇称不守恒是怎么回事啊。

来自:    更新日期:早些时候
什么叫 “弱相互作用下宇称不守恒”~

粒子世界(15)杨振宁、李政道提出弱相互作用中宇称不守恒!

粒子世界(15)杨振宁、李政道提出弱相互作用中宇称不守恒!

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称。由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的。

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

拓展资料:

宇称不守恒的发现并不是孤立的。

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。

如果物理定律严格对称,宇宙连同我们自身就都不会存在了--宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称.由吴健雄用钴60验。 

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同.1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子.   

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!

用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的. 在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。   

吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60**核自旋方向转向左旋,把另一套装置中的钴60**核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果实了弱相互作用中的宇称不守恒。   

我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢?   

也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想当然的毛病。吴健雄的实验明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。 宇宙源于不守恒 [编辑本段] 宇称不守恒的发现并不事立的。 

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。   

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。   

但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。   

接下来,科学家发现连时间本身也不再具有对称性了!   可能大多数人原本就认为时光是不可倒流的。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明。不过,在物理学家眼中,时间却一直被视为是可逆转的。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向。   

然而,1998年年末,物理学家们却首次在微观世界中发现了违背时间对称性的事件。欧洲**能研究中心的科研人员发现,正负K介子在转换过程中存在时间上的不对称性:反K介子转换为K介子的速率要比其逆转过程——即K介子转变为反K介子来得要快。   

至此,粒子世界的物理规律的对称性全部破碎了,世界从本质上被明了是不完美的、有缺陷的。 发现过程 [编辑本段] 杨振宁、李政道和吴健雄是中国老百姓耳熟能详的名字,他们的事业巅峰和“宇称”紧紧联系在一起。   

用科学家的话说,宇称是内禀宇称的简称。它是表征粒子或粒子组成的系统在空间反射下变换性质的物理量。在空间反射变换下,粒子的场量只改变一个相因子,这相因子就称为该粒子的宇称。我们也可以简单地理解为,宇称就是粒子照镜子时,镜子里的影像。以前人们根据物理界公认的对称性认为,宇称一定是守恒的。这就像有正电子,就一定有负电子一样。杨振宁教授1951年与李政道教授合作,并于1956年共同提出“弱相互作用中宇称不守恒”定律。



宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称。由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的。

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

拓展资料:

宇称不守恒的发现并不是孤立的。

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。

如果物理定律严格对称,宇宙连同我们自身就都不会存在了--宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。



宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称.由吴健雄用钴60验证。 科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同.1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子. 1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的. 在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。 吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果证实了弱相互作用中的宇称不守恒。 我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢? 也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想当然的毛病。吴健雄的实验证明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。 宇宙源于不守恒 [编辑本段] 宇称不守恒的发现并不是孤立的。 在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。 这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。 但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。 接下来,科学家发现连时间本身也不再具有对称性了! 可能大多数人原本就认为时光是不可倒流的。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明。不过,在物理学家眼中,时间却一直被视为是可逆转的。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向。 然而,1998年年末,物理学家们却首次在微观世界中发现了违背时间对称性的事件。欧洲原子能研究中心的科研人员发现,正负K介子在转换过程中存在时间上的不对称性:反K介子转换为K介子的速率要比其逆转过程——即K介子转变为反K介子来得要快。 至此,粒子世界的物理规律的对称性全部破碎了,世界从本质上被证明了是不完美的、有缺陷的。 发现过程 [编辑本段] 杨振宁、李政道和吴健雄是中国老百姓耳熟能详的名字,他们的事业巅峰和“宇称”紧紧联系在一起。 用科学家的话说,宇称是内禀宇称的简称。它是表征粒子或粒子组成的系统在空间反射下变换性质的物理量。在空间反射变换下,粒子的场量只改变一个相因子,这相因子就称为该粒子的宇称。我们也可以简单地理解为,宇称就是粒子照镜子时,镜子里的影像。以前人们根据物理界公认的对称性认为,宇称一定是守恒的。这就像有正电子,就一定有负电子一样。杨振宁教授1951年与李政道教授合作,并于1956年共同提出“弱相互作用中宇称不守恒”定律。

因为是在弱力的情况下才会出现宇称不守恒,所以没有镜子能照到粒子的运动。只有创造同样的环境,完全模仿镜子进行实验。
李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子。然后用的这两种粒子进行的实验。证明了宇称不守恒.
我也在想这两个粒子肯定还是有区别的。所以大多数人还是不愿意相信宇称不守恒。所以他们两个就请了牛逼人物。
吴健雄(女)同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,她在极低温(0.01K)下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。
实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。意思说,这个粒子如果照镜子的话,它的衰变方式在镜子里和镜子外不一样。实验结果证实了弱相互作用中的宇称不守恒。
从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。
纯粹个人理解哈。勿喷。
宇称不守恒定理太基本了。比如说你才学会1+1=2,若靠自身的努力的话。不知道要多长时间才会创造出来电脑这个东西。所以说,宇称不守恒定理这个点太基本了。短时间内技术应用领域根本跟不上节奏,无法投入到生产应用。未来的人类肯定会比今天的我们更加熟练使用各种不守恒。才会慢慢的转化为生产力。




谁能给我详细解释一下宇称不守恒是怎么回事啊。视频

相关评论:
  • 14768386462什么是宇称守恒与宇称不守恒
    牛艺霭弱相互作用下的宇称守恒的这一看法一直维持了三十年。但在1954~1956年间人们在粒子物理研究中遇到了一个难题,即所谓的“τ-θ之谜”,就是荷电的κ介子有两种衰变方式,一种记为τ介子,一种记为θ介子。这两种粒子的质量、电荷、寿命、自旋等几乎完全相同,以致于人们不能不怀疑它们是同一粒子。然...

  • 14768386462谁能给我详细解释一下宇称不守恒是怎么回事啊。
    牛艺霭吴健雄的实验进一步验证了这一理论,她利用钴60的衰变,观察到在强磁场下,自旋相反的钴60原子核衰变产生的电子数和方向存在显著区别,从而证实了宇称不守恒的存在。想象一下,两个互为镜像的粒子世界,它们在弱相互作用下的行为就像汽车A和B的司机操作,看似对称的操作结果却大相径庭。粒子世界中的宇称...

  • 14768386462宇称不守恒通俗解释世界是真的,宇称不守恒通俗解释举例
    牛艺霭1.宇称不守恒,这是一个让许多中国人既熟悉又陌生的词语,熟悉,是因为这是全球华人的第一个诺贝尔奖,我们的教科书和媒体会经常提到这个也是很自然的事情。2.陌生,是因为大多人除了知道杨振宁和李政道发现了它以外,完全不知道这个宇称不守恒到底在说啥。3.另外,跟前沿理论物理的一大堆让人懵圈的专业...

  • 14768386462什么是时间反演不守恒?
    牛艺霭宇称守恒可以简单理解为,基本粒子在照镜子时,其镜中的像与粒子具有对称性。华人科学家杨振宁和李政道提出弱相互作用下宇称不守恒之后,人们认为应当存在“电荷宇称联合守恒”(CP守恒),即将粒子换成电荷与之相反的反粒子并进行空间反射后,物理定律是不变的。但这一假设无法解释为何我们生活在一个物质的...

  • 14768386462如何通俗易懂地解释「弱相互作用中宇称不守恒」?
    牛艺霭如下:宇称不守恒定律是指:在弱相互作用中,互为镜像的物质的运动不对称,由吴健雄用钴60验证。对称性反映不同物质形态在运动中的共性,而对称性的破坏才使它们显示出各自的特性。如同图案一样,只有对称没有它的破坏,看上去虽然很规则,但同时显得单调和呆板。只有基本上对称而又不完全对称才构成美的...

  • 14768386462宇称不守恒通俗解
    牛艺霭宇称,作为对称性的一种,最初是指在空间和时间变换下物理定律保持不变的特性。然而,当杨振宁和李政道在1956年提出宇称不守恒的理论时,它打破了长久以来的物理学观念,引发了科学界的巨大震动。这一发现意味着某些基本粒子的反应违反了宇称对称,这不仅挑战了当时的理论框架,也为粒子物理学的发展开辟了...

  • 14768386462宇称不守恒的可怕之处
    牛艺霭最后,宇称不守恒的可怕之处在于它挑战了我们对自然界的直观认知。在日常生活中,我们习惯于认为物理过程在正常方向和反向方向应该是等效的,而宇称不守恒的存在打破了这一认知。这意味着我们需要重新审视和重新解释一些基本物理定律,以更好地理解自然界的运作方式。总结起来,宇称不守恒的可怕之处在于它...

  • 14768386462宇称不守恒定律是什么意思
    牛艺霭对于弱 相互 作用,此定律不成立 词语分解 宇称的解释 说明它在反演下之行为的波函数的一种物理 性质 ,反演就是所有三个空间 坐标 同时对原点反号,若波函数反演后不变则其宇称为或称;偶宇称;,若波函数在反演只 改变 符号则其宇 称为-或称;奇宇称; 守恒的解释 数值保持恒定不变热量守恒 ...

  • 14768386462什么叫 在弱相互作用中宇称不守恒 理论
    牛艺霭所谓的宇称守恒就是指物理规律在空间反演(如镜象)下完全不变,我们可以举一个例子,如图:左边的钟是右边的钟的镜象,右边的钟以顺时针方向旋转,左边的钟则以逆时针方向旋转,但两个钟的快慢却是一致的.这就是说,物理规律是左右对称的,这就是宇称守恒定律.宇称守恒定律于1926年被发现后,一直被视为...

  • 14768386462谁能给不守恒是怎么回事啊。
    牛艺霭宇称不守恒,简单来说,就是弱相互作用中,原本看起来镜像对称的粒子行为并不完全相同。这个理论的突破始于1956年,当时科学家发现θ和γ介子看似相同,但实际上在衰变过程中表现出差异,这表明它们并非同一种粒子。李政道和杨振宁进一步研究后,揭示了τ和θ(后来称为K介子)在弱相互作用下的运动规律不同...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网