∫e^(-x^2)dx怎么求 ??用的是什么方法??

来自:    更新日期:早些时候
∫e^(-x^2)dt怎么求 ??用的是什么方法??~

如果是∫e^(-x^2)dt,那么积分与x无关,原式=e^(-x^2)*t。

此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。
结果 ∫e^(x^2)dx=1/2 √π erfi(x) + C
注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值 。
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上的积分记作
其中的 除了表示x是f中要进行积分的那个变量(积分变量)之外,还可以表示不同的含义。在黎曼积分中, 表示分割区间的标记;在勒贝格积分中,表示一个测度;或仅仅表示一个独立的量(微分形式)。一般的区间或者积分范围J,J上的积分可以记作
如果变量不只一个,比如说在二重积分中,函数 在区域D上的积分记作 或者 其中 与区域D对应,是相应积分域中的微分元。


扩展资料:
除了黎曼积分和勒贝格积分以外,还有若干不同的积分定义,适用于不同种类的函数。
达布积分:等价于黎曼积分的一种定义,比黎曼积分更加简单,可用来帮助定义黎曼积分。
黎曼-斯蒂尔杰斯积分:黎曼积分的推广,用一般的函数g(x)代替x作为积分变量,也就是将黎曼和中的 推广为 。
勒贝格-斯蒂尔杰斯积分:勒贝格积分的推广,推广方式类似于黎曼-斯蒂尔杰斯积分,用有界变差函数g代替测度 。
哈尔积分:由阿尔弗雷德·哈尔于1933年引入,用来处理局部紧拓扑群上的可测函数的积分,参见哈尔测度。
伊藤积分:由伊藤清于二十世纪五十年代引入,用于计算包含随机过程如维纳过程或半鞅的函数的积分。

采用洛必达法则,解题过程如下:

扩展资料

求函数积分的方法:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

作为推论,如果两个  上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。

对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对  中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。

如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。



要计算∫<0,+∞>e^(-x^2)dx 可以通过计算二重积分:∫∫<D>e^(-x^2-y^2)dxdy.
那个D表示是由中心在原点,半径为a的圆周所围成的闭区域.
下面计算这个二重积分:
解:在极坐标系中,闭区域D可表示为:0≤r≤a,0≤θ≤2π
∴∫∫<D>e^(-x^2-y^2)dxdy=∫∫<D>e^(-r^2)*rdrdθ
=∫<0,2π>[∫<0,a>e^(-r^2)*rdr]dθ
=-(1/2)e^(-a^2)∫<0,2π>dθ
=π(1-e^(-a^2))

下面计算∫<0,+∞>e^(-x^2)dx ;
设D1={(x,y)|x^2+y^2≤R^2,x≥0,y≥0}.
D2={(x,y)|x^2+y^2≤2R^2,x≥0,y≥0}.
S={(x.y)|0≤x≤R,0≤y≤R}.
可以画出D1,D2,S的图.
显然D1包含于S包含于D2.由于e^(-x^2-y^2)>0,从而在这些闭区域上的二重积分之间有不等式:
∫∫<D1>e^(-x^2-y^2)dxdy<∫∫<S>e^(-x^2-y^2)dxdy<∫∫<D2>e^(-x^2-y^2)dxdy.
∵∫∫<S>e^(-x^2-y^2)dxdy=∫<0,R>e^(-x^2)dx*=∫<0,R>e^(-y^2)dy
=(∫<0,R>e^(-x^2)dx)^2.
又应用上面得到的结果:∫∫<D>e^(-x^2-y^2)dxdy=π(1-e^(-a^2))
∴∫∫<D1>e^(-x^2-y^2)dxdy=(π/4)(1-e^(-R^2)).
∴∫∫<D2>e^(-x^2-y^2)dxdy=(π/4)(1-e^(-2R^2)).
于是上面的不等式可写成:
(π/4)(1-e^(-R^2))<(∫<0,R>e^(-x^2)dx)^2<(π/4)(1-e^(-2R^2)).
令R→+∞,上式两端趋于同一极限π/4,从而
∫<0,+∞>e^(-x^2)dx =sqrt(π)/2.

其中:sqrt(π)表示根号π.

无法表示为初等函数,证明见图



这个积分是积不出来的,它的结果不是常规的函数


∫e^(-x^2)dx怎么求 ??用的是什么方法??视频

相关评论:
  • 18881674968∫e^(- x^2) dx=多少?
    云杨届=(∫e^(-x^2)dx)^2 ∴∫e^(-x^2)dx=√π

  • 18881674968∫e^(- x^2) dx等于什么?
    云杨届如果积分限是-∞到∞,∫e^(-x^2)dx =√π 。若积分限0到∞,根据偶函数的性质可知,∫e^(-x^2)dx =√π\/2。

  • 18881674968∫e^(- x^2) dx等于什么?
    云杨届∫e^(-x^2)dx = Γ(1\/2) \/ 2 = √π \/ 2 解题过程如下:Γ(x)=∫t^(x-1)\/e^t dt 积分限为0到正无穷大 取x=3\/2得 Γ(1\/2)=∫t^(-1\/2) * e^(-t)dt = ∫ 1\/x * e^(-x^2) d(x^2)=2∫e^(-x^2)dx 余元公式为 Γ(x)*Γ(1-x)=π \/ sinπx 所以...

  • 18881674968e^(-x^2)dx积分怎么求
    云杨届=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2 ∴∫e^(-x^2)dx=√π

  • 18881674968求∫e^(-x^2)dx=多少?
    云杨届=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2 ∴∫e^(-x^2)dx=√π 函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变...

  • 18881674968求∫e^(-x^2) dx积分
    云杨届∫e^(-x^2) dx积分=√π\/2。记I=∫e^(-x^2) dx,那么同理 I=∫e^(-y^2) dy,两者相乘得到I^2=∫e^(-x^2) ∫e^(-y^2) dxdy。这在极坐标下相当于对一个半径为+∞的,在第一象限的扇形进行积分,也就是∫(0,π\/2)dθ∫(0,+∞)e^(-r^2) rdr。容易解得这个...

  • 18881674968∫e^(- x^2) dx等于什么?
    云杨届∫∫e^(-x^2-y^2) dxdy=∫∫e^(-r^2) rdrdα=(∫e^(-r^2) rdr)*(∫dα)=π*∫e^(-r^2) dr^2=π*(1-e^(-r^2) |r->+∝=π而:∫∫e^(-x^2-y^2) dxdy=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2所以∫e^(-x^2)dx=√π。

  • 18881674968求∫ e^(-x^2)dx的积分方法
    云杨届这种形式的积分你可以参考标准正态分布:f(x)=1\/(√(2π))*e^(-x²\/2)。∫ e^(-x^2)dx=∫(√(2π))f(x)dx =(√(2π))∫f(x)dx =(√(2π))Φ(x)其中Φ(x)是标准正态分布,查表即可

  • 18881674968∫e^(- x^2) dx的积分等于几?
    云杨届【求解答案】【求解思路】被积函数同时乘以和除以同一个数,√(π)\/2,然后套用误差函数,得到结果 【求解过程】【本题知识点】1、概率积分(误差函数)。误差函数表示正态分布的概率密度函数的积分,用符号 erf(x) 表示。在数学中,误差函数(也称之为高斯误差函数),是一个非基本函数(即不是...

  • 18881674968积分∫e^(-x^2)dx的解是什么
    云杨届解法如下:I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy 转化成极坐标 =[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1\/2)e^(-p^2)|(0-+无穷)]=2π*1\/2 =π 不定积分的公式 1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx =...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网