请问国家饮用水卫生标准规定地下水水源多少米不能有污染源?

来自:    更新日期:早些时候
地下水污染源解析技术~

1.3.1.1 地下水污染源识别技术
污染源解析体系的建立,主要是污染源解析方法的建立,自20世纪中期以来,国内外学者对污染物在含水层中的运移、控制、修复进行了大量的研究,随着正问题研究方法以及理论的成熟,污染源识别的反问题逐渐成为研究的重点。源解析的方法根据研究对象的不同可分为扩散模型(Diffusion Model)和受体模型(Receptor Model)。前者以污染源为研究对象,后者以污染区域为研究对象。由于扩散模型需要预先知道污染源的排放量,进而研究污染物的浓度分布或反应机理,但实际情况中我们往往便于得到污染物现状分布,而源的分布以及排放信息较难获得。受体模型通过分析源和受体的理化性质识别可能的污染源和源对受体各成分或各监测点的贡献。20世纪60年代,国外首先在大气领域开始了受体模型的研究,形成一套定性、定量的方法解析污染源,这些方法逐渐在土壤及水环境污染源解析中得到广泛应用。受体模型是相对于正向的扩散模型(源模型)而言,是一个反演未知参数的过程,污染源解析现阶段没有明确统一的定义,简称源解析、源识别,环境中各种元素和化合物含量的信息蕴藏着各污染源的特征信号,根据目标环境中检测到的信号,利用污染源与环境之间的“输入-响应”关系,结合实际条件判别、解析与评价污染物的来源、位置、排放强度和时间序列等要素即污染源的识别。
1.3.1.2 污染源解析数值模拟技术
地下水溶质运移反问题的研究起源于研究数理方程反问题,地下水污染源解析反问题求解也从其中借鉴而来,其反演算法主要有优化-仿真、概率统计等。
从20世纪80年代开始,Wagner(1992)首先在数值模拟基础上,结合线性规划与最小二乘法,将数值模拟的污染物浓度以响应矩阵形式嵌入优化模型中,进行地下水污染源的识别;Aral和Guan(2001)运用响应矩阵识别地下水污染源,并证明该方法比运用线性规划方法更有效;Mahar和 Datta(1997)利用优化地下水监测系统来提高污染源识别的效率,利用监测井获得的数据运用于非线性优化模型中获得更精确的污染源预测;Atmadja和Bagtzoglou(2001)总结了污染源识别中的数学方法,将方法归纳为优化法、解析解法及概率统计方法和地学统计法。
Datta和Chakrabarty(2009)采用了模拟模型外部链接优化模型的方法识别污染源;Singh(2004)等利用人工神经网络法识别未知的污染源,同时研究了遗传算法解二维源解析优化模型;Khalil等(2005)综合利用4种模拟方法(人工神经网络(ANNS)、支持向量机(SVMS)、投影局部加权回归(LWPR)、相关向量机(RVMS))建立了相对复杂和耗时的数学模型,模拟地下水中硝酸盐浓度分布。Wang和Zabaras(2006)利用贝叶斯级数法解对流弥散方程,推导过去某一时间污染物浓度分布,研究了地下水连续渗流的污染来源;Bashi-Azghadi等(2010)利用多目标优化模型——非劣排序遗传算法Ⅱ,链接到MODFLOW和MT3D模型中进行污染源识别,利用并行支持向量机和人工神经网络识别主要污染物。同时还有众多学者对地下水污染源位置及排放时间序列进行解析。
国内针对污染源解析的研究不多,多集中在地表水及水力参数识别领域。地下水方面,国内学者运用水动力-水质耦合模型,建立了基于贝叶斯推理的污染物点源识别模型,通过马尔科夫链蒙特卡罗后验抽样获得了污染源位置和强度的后验概率分布和估计量,较好地处理了模型的不确定性和非线性,在反演结果的可靠性和估计的精度方面采用贝叶斯推理和抽样方法获得的反问题的解具有信息量大,能给出环境水力学参数的后验分布且估计精度高的优点,该方法适用于水文地质条件以及水流运移过程相对复杂的多点源解析。
Sidauruk等(1998)提出一种基于解析解的反演方法,该方法只需要合理的污染浓度序列,可以预测弥散系数、水流流速、污染源浓度、初始位置和污染开始时间,利用参数与浓度对数之间的相关系数,取得参数值,但是由于运算基于解析解,该方法只适用于地层条件简单的均质含水层。Skaggs和Kabala(1994)在一维饱和均质非稳定流模型中运用TR方法,利用复杂的污染物浓度序列,在其他条件未知的情况下,开展源解析工作,指出该方法对数据四舍五入的误差并不敏感,但精度受污染羽测量误差影响明显。
1.3.1.3 污染源解析多元统计法
多元统计方法从统计数据中分析各水质点潜在相关关系,结合实际条件揭露水文地质条件,在污染源解析应用中,无须事先知道污染物源成分谱,适用于水文地质条件简单,观测数据量较大,污染源和污染种类相对较少的地区,其优点是运用简便,可广泛应用统计分析软件进行计算,在实际应用中,多元统计方法只能识别5~8个污染源。
(1)因子分析法
因子分析(Factor Analysis,FA)是研究相关阵或协方差阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。FA法使用简单,不需要研究地区优先源的监测数据,在缺乏污染源成分谱的情况下仍可解析,并可广泛使用统计软件处理数据。其不足之处在于需要输入大量数据,而且只能得到各类元素对主因子的相对贡献百分比。
(2)主成分分析法
主成分分析方法(Principal Component Analysis,PCA)是常用的数据降维方法,应用于多变量大样本的统计分析中。该方法是对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。
(3)聚类分析法
聚类分析又称群分析(Cluster Analysis,CA),它是研究(对样品或指标)分类问题的一种多元统计方法,即把一些相似程度较大的样品(或指标)聚合为一类,把另一些彼此之间相似程度较大的样品(或指标)聚合为另一类。根据分类对象不同,可分为对样品分类的Q型聚类分析和对指标分类的R型聚类分析两种类型。聚类分析可用SPSS软件直接实现,在水质时空变异、水化学类型分区中得到广泛的应用。
(4)矩阵数据分解法
利用矩阵分解来解决实际问题的分析方法很多,如主成分分析(PCA)、独立分量分析(ICA)、奇异值分解(SVD)、矢量量化(VQ)、因子分析(FA)等。在所有这些方法中,原始的大矩阵被近似分解为低秩的V=WH形式。正定矩阵分解法(Positive Matrix Factorization,PMF)、非负矩阵分解法(Non-negative Matrix Factorization,NMF)和非负约束因子分析(Factor Analysis with Non-negative Constraints,FA-NNC)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法,三者在求解过程中对因子载荷和因子得分均做非负约束,使得因子载荷和因子得分具有可解释性和明确的物理意义。
(5)混合多元统计法
目前应用的混合多元统计法主要有因子分析与多元线性回归相结合,因子分析法与化学质量平衡法相结合,因子分析、化学质量平衡法与多元线性回归3种方法相结合,以上几种方法也可以和聚类分析或GIS相结合以提高分析结果的准确性。其中因子分析与多元线性回归结合在水和沉积物污染源的辨析中有着非常广泛的应用。
1.3.1.4 污染源解析化学质量平衡法
化学质量平衡法(CMB)于1972年由Miller等(1972)第一次提出。CMB法在大气领域的应用已趋于成熟,美国EPA开发了一系列CMB模型,并得到广泛的应用。CMB法是基于质量守恒的方法,利用源和受体化学组成的监测数据建立质量平衡模型以定量计算各污染源对地下水中污染物浓度的贡献率。CMB方法的应用必须满足几点假设条件:①特征污染物成分从源到汇不发生化学反应;②化学物质之间不发生反应;③对受体有明显贡献的源均被纳入模型;④与不同源的成分谱线性无关;⑤测量误差是随机误差且符合正态分布。主要利用污染源组分浓度与采样点数据中各污染组分的浓度求线性和,构成一组线性方程,计算各污染源对取样点的贡献率。
设通过采样分析检测点处成分i的浓度为Xi(mg/L),总共有j个污染源排放点,各排放点处i污染物浓度为Cij,各排放点处成分i对最终监测点处的贡献百分比为Pij,则

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:i——检测点处各不同组分数;
j——污染源的个数;
Xi——检测点测得的成分i的浓度值;
Cij——污染源j点处i组分的浓度;
Pij——各j污染源对检测点处i成分的贡献率。
根据选择测定的组分可建立i个方程,当i≥j,联立方程组原则上可求出Pij,确定各污染源的贡献率识别主要污染源。
地下水中污染物的迁移转化是一个复杂而长期的过程,CMB法是否适合运用于地下水污染源解析还需要进一步的研究和探讨。
1.3.1.5 解析法与GIS相结合法
各种解析方法能够与GIS相结合,从时空上反映刻画污染过程,并为解析提供数据和图像;GIS最初主要应用于空间分析、显示和制图。利用GIS软件的空间分析功能,分析地下水水质组分空间分布状况,绘制等值线图,直观地反映污染源与地下水水质的相关关系。国内外学者运用GIS技术和多元统计方法对表面水污染进行空间分析及源解析。Ouyang等(2006)分析了表面水水质的季节变化,并根据不同季节找到影响水质的重要因子。Zhou F等(2007)结合多元分析方法及地理信息系统(GIS),对香港东部海湾海水污染的时空分布特征进行研究,并进行了污染源识别工作,对数据进行预处理,利用聚类分析以及主成分分析减小了数据测量误差,确定了特征污染物以及各污染物主要来源。
1.3.1.6 定性及半定量方法
定性及半定量方法主要应用于 PAHs(多环芳烃)解析,迄今已发现的200 余种PAHs中有相当部分具有致癌性和致突变性(Christensen et al.,2007),PAHs主要通过大气沉降、城市污水和工业废水的排放、石油的溢漏等途径进入地表水和地下水,从而导致饮用水水源污染。PAHs 是目前水环境中致癌化学物质中最大的一类(Mnzie et al.,1992)。因此,对环芳烃来源进行解析,进行地下水污染防控也是研究的重点。

由于地下水一旦被污染,很难在短期内得到恢复,所以应积极采取预防措施,控制地下水污染的发生。对遭受污染的地下水,要及时采取有效的治理措施,使水质得到尽快恢复。该项工作不仅涉及社会各方面和政府各部门,还要充分注意到技术上的可行性和经济上的合理性。为此,必须利用系统工程的观点和方法,将科学管理与先进技术紧密结合起来,主要做好下述几个方面的工作。
5.5.1 控制地下水污染的行政措施
(1)首先要通过宣传教育,提高广大群众的“环境意识”和“珍惜地下水资源的意识”,让全社会都关注地下水保护工作。
(2)必须从中央到地方建立起一整套赋有行政和法律权利、又有专业职能的行政及专业机构,对包括地下水资源在内的水资源进行统一、科学和严格的管理与保护。水资源的管理和保护机构可以按行政区划或按水文地质单元来设立,以便形成一元化的有权威的管理机构。其职能应该是:指挥和协调有关部门对水资源的开发与保护;监督和检查排废单位的排放情况是否合乎规定;管理管辖范围内的水文地质资料;组织管辖区内防止地下水污染方面的科学研究,为制定与修改有关地下水资源保护的法令、法律条款提供技术论证;管理建井工作;落实并监督有关地下水资源保护的规划、法律和法令的实施情况等等。
(3)实行以法管水。我国已先后制定了环境保护法、水污染防治法、征收排放费暂行法和基本建设项目环境保护法等一系列法令、法规。尤其《中华人民共和国水污染防治法》第五章第三十二至第三十六条,为防止地下水污染提供了法律保证。各主管部门依据国家的有关法规,应结合本地的具体情况进行落实和实施监督。
(4)在执行水资源保护法时,必须贯彻奖励与惩罚相结合的方针。对于实行综合利用、化害为利的单位,应给予减税、免税和价格政策的优惠。但对于置国家法律而不顾、随便排放“三废”,肆意污染地下水资源的企事业单位应给予经济制裁,按造成的危害程度判决不同数额得罚款,情节严重的,对当事者要追究刑事责任,对受害单位和个人给予赔偿。
5.5.2 控制地下水污染的技术措施
5.5.2.1 严格控制污染源的排放
如前所述,降水对固体废弃物堆的淋滤,大气中的各种污染物随雨水、降雪落到地面,均可随水渗入地下,液体废弃物更会直接携带污染物入渗,污染土壤和地下水。由于对固体废弃物和大气污染的防治另有章节讨论,故不再赘述。这里仅针对液体废弃物而论。
5.5.2.1.1 改进生产技术,发展无污染的新工艺。如在电镀工艺方面,实行无氰电镀或微氰电镀,消除或减轻了氰的污染。
5.5.2.1.2 发展封闭系统、重复利用废水,减少污水排放量。如加拿大在1976年就建造了世界上第一座不排废水的纸浆厂,废水和化学品在封闭系统中循环使用。
5.5.2.1.3 加强企业的技术改造,实行废水资源化。如造纸厂用水量极大,所排废水中含有大量有机物和某些化学药品,将纸浆废液中的碱和木质素回收,已经产生了很大的经济效益和环境效益。
5.5.2.1.4 坚持严格的废水排放标准,不仅要控制其污染物的浓度,而且还要控制其排放总量。
(1)已经产生的液体废弃物(废水)向地面水水域和城市排水管网排放,必须严格执行“国家污水综合排放标准”(GB8978-88)。对于低于标准中限值的废水,方可向环境中排放。该标准将排放的污染物按其性质分为两类:①第一类污染物,指能在环境或动植物体内蓄积,对人体健康产生长远不良影响者,含有此类有害物质的污水,不分行业和污水排放方式,也不分受纳水体的功能类别,一律在车间或车间处理设施排出口取样,其最高允许排放浓度必须符合表5.3所列规定;②第二类污染物,指其长远有害影响小于第一类污染物质,
表5.3 第一类污染物的最高允许排放浓度(mg/L)


在排放单位排出口取样,其最高允许排放浓度和部分行业最高允许排水定额必须符合表5.4所列规定。按地面水域使用功能要求和污水排放去向,对向地面水水域和城市排水管网排放的污水分别执行一、二、三级标准:①特殊保护水域,指国家GB3838-88《地面水环境质量标准》Ⅰ、Ⅱ类水域,例如城镇集中式生活饮用水水源地一级保护区、国家划定的重点风景名胜区水体,不得新建排污口,现有的排污单位由地方环保部门从严控制,以保证受纳水体水质符合规定用途的水质标准;②重点保护水域,指国家GB3838-88Ⅲ类水域和《海水水质标准》Ⅱ类水域,例如城镇集中式生活饮用水水源地二级保护区、一般经济渔业水域、重要风景游览区等,对排入这些水域的污水执行一级标准;③一般保护水域,指国家GB3838-88Ⅳ、Ⅴ类水域和《海水水质标准》Ⅲ类水域,例如一般工业用水区、景观用水区、农业用水区、港口和海洋开发作业区等,排入这些水域的污水执行二级标准;④对排入城镇排水管网并进入二级污水处理厂进行生物处理的污水应执行三级标准。对排入未设置二级污水处理厂的城镇排水管网的污水,必须根据排水管网出水口受纳水体的功能要求按上述②、③条规定,分别执行一级或二级标准。
表5.4 第二类污染物最高允许排放浓度(mg/L)


(2)应按流域或区域实行污染物排放总量控制。根据流域或区域水的环境容量确定允许该水体的污染物容量,称为“容量总量控制”;根据一个既定的环境目标或污染物消减目标确定排污单位的污染物排放总量,称为“目标总量控制”。在确定了允许排入水体的污染物总量后,也应按总体规划分配至各污染源,确定其最大允许排污总量。根据允许的污染物排放总量,各地环保部门可要求排污单位限期治理,发放排污许可证,并通过对污染物排放量的监测确保水体的环境质量。
5.5.2.2 加强对液体废弃物的处理
对不能达到排放标准的废水进行有效的处理,使其所含的污染物分离出来,或将其转化为无害的物质,从而使污水得到净化。
现代的污水处理技术,针对不同污染物的特性,发展了各种不同的污水处理方法,按其作用原理划分为四大类;即物理法、化学法、生物法(生物化学法)和物理化学法(见表5.5)。
表5.5 污水处理方法分类表


污水中的污染物质是多种多样的,不能预期只用一种方法就能够把所有的污染物去除殆尽,一种污水往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。按处理程度划分,污水处理可分为一级、二级和三级处理。
一级处理的内容是去除污水中呈悬浮状态的固体污染物,物理处理法通常只能完成一级处理的要求。经过一级处理的污水仍不宜排放,一般还必须进行二级处理。因此,针对二级处理来说,一级处理又属预处理。
二级处理的主要任务,是对经一级处理后的污水,再用生物法除去污水中呈胶体状态的有机污染物(BOD)。一般地说,经二级处理后,污水已达到排放标准了。长期以来,把生物法处理作为污水二级处理的主体工艺。近年来,有些国家正在研究和采用化学或物理化学法作为二级处理的主体工艺。
污水三级处理,又称污水深度处理。污水经二级处理后,仍含有磷、氮、病原微生物和难以生物降解的有机物等,需进行三级处理,以便进一步去除上述污染物或回收有用物质,并能使污水经三级处理后再次复用。三级处理主要是采用物理化学法或土地处理系统。
5.5.2.3 充分利用环境自净能力
充分利用含水层防污性能,以更有效地防止地下水污染的研究是非常重要的。所谓含水层防污性能,是指在一定地质和水文地质条件下含水层防止地下水污染的能力,其取决于含水系统的结构,包括覆盖层岩性、厚度、地面破坏程度、地下水类型、埋深、含水层与隔水层的岩性组合、它们的厚度及其在分布上的连续性等。
德国维尔赫夫(H.Verhuff,1981)在考虑含水层防污性能时,主要依据水文地质结构、包气带的地质条件及土壤条件、地下水埋深或含水层厚度,把含水层防污性能划分为五级(图5.8)。

图5.8 防止来自地表污染的含水层防污性能分类图

关于包气带即覆盖层的防污能力,也有采用覆盖层阻水系数来表示其净化能力的:

环境地质与工程

式中:B——阻力系数,即液体废弃物从地表通过包气带到达含水层的时间;
m1,m2…mn及k1,k2…kn为覆盖层各土层的厚度和相应的垂向渗透系数。
这一表示方法的主要问题是未考虑覆盖层对污染物的化学净化能力。
在研究含水层防污染性能时还应注意到由于地下水的开发引起水文地质条件的改变所可能导致的地下水污染。如过量开采地下水引起咸水入侵等。为避免类似现象发生,应该合理地开发地下水。
5.5.3 受污染地下水的恢复
如前所述,由于种种原因,近年来在我国地下水污染呈逐年加剧之势,如何挽救被污染的地下水使其恢复,是目前水资源保护的一项迫切而艰巨的任务,它已引起国内外环境水文地质工作者的极大兴趣。然而,鉴于治理受污染水层是对受污介质和运动着的地下水同时进行处理,技术难度很大,许多方法尚处于探索阶段。这里仅简单介绍目前普遍采用的一些方法。
5.5.3.1 受污染地下水的自然恢复
地下的土层和含水层是具有自然净化能力的。在污染物进入地下水以及污染物随地下水在含水层的迁移过程中,发生了一系列的稀释、机械过滤、中和与沉淀、吸附和离子交换以及生物降解等物理、化学和生物化学反应,可使污染的地下水得到净化。
由于地质环境的特殊性,地下水在多孔介质中运动极其缓慢,因此,自然净化所需要的时间也是相当长的,即使是在污染源消除之后,也需要数十年甚至上百年才能使地下水在自净过程中恢复。
5.5.3.2 人工净化处理措施
为了加速净化过程,缩短地下水的恢复时间,可以用人工净化处理措施来加强地下水的净化能力,目前常用的有化学处理法和生物处理法。
5.5.3.2.1 化学处理法
化学处理法需要投加化学试剂,该试剂必须针对要清除的污染物,试剂本身及化学反应生成物不应该有任何毒性。生产中已成功采用的化学处理法有如下几种。
(1)用高锰酸钾清除砷:As5+与Ca2+和一些离子形式的化合物溶解性很差,因而在氧化条件下所产生的大量的化合物就会从地下水中沉淀出来。
(2)利用臭氧清除石油和氰:向含水层输入臭氧可以形成分解石油的微生物生长环境,减少溶解有机酸的含量,同时又可促使氰分解。德国曾用此法净化被石油污染的含水层,其过程是用四口深井抽水时,在井底安装臭氧混合装置,使抽到地表的水已与臭氧均匀混合,然后再把抽出的水灌入污染带周围的注水井形成一道高地下水位的水墙,阻止了污染地下水的扩散,从而成功地清除了含水层中的石油和氰。
(3)氧化还原条件下去除铁锰(Vyredox法):Vyredox法是利用向抽水井周围的含水层注入氧气来形成高氧化还原电位和高的pH值,使Fe、Mn离子在该条件下被氧化而沉淀出来。
如图5.9所示,向井中注入不含Fe、Mn离子且富含氧的水,因而Fe2+在距抽水井较远处即可被较低的氧化还原电位氧化为Fe3+而沉淀下来。在抽水和注入循环过程中,地下水中的微生物也会繁殖起来,相应地,微生物死亡量也会增大,死亡微生物遗体提供了大量的有机碳,又可促使一种能氧化分解Mn的微生物生长,故沉淀去除Mn的作用一般发生在抽水井附近的高Eh 值区域。显然该方法形成的物理、化学及生物条件是除去污染含水层中的Fe离子,然后再去除Mn离子。

图5.9 氧化还原电位条件下去除Fe、Mn的原理示意图


图5.10 地下水污染的就地包气法处理

从地下抽出的污染地下水不能直接用于回灌,而是经过专门处理之后才能输给注水井。净化含水层时一般都设有多个注水井,而每个抽水井的四周又被多个注水井包围起来,抽水井和注水井的总数量应由水文地质条件和污染物的浓度来确定。所有抽水井和注水井都用管道系统连在一起,并与曝气装置和氧气输入装置相连。抽出的地下水先在地表进行净化,将所含污染物去除并收集起来,然后再曝气并输入氧气,经过上述过程后才输向注水井并进行回灌。
用Vyredox法净化含水层运转周期短,见效快,1976年在芬兰研究成功后已逐渐在欧洲一些国家推广,但适用性受水文地质条件和地球化学条件限制。
5.5.3.2.2 生物处理法
生物处理法可分为就地处理法和抽出处理法两种。
(1)地下水污染的就地生物处理的形式如图5.10及图5.11所示。图5.10表示了投加营养物、充氧和接种纯菌种等一系列人工强化处理的措施。图5.11则显示了利用地下渗滤床来就地恢复的例子。渗滤床如同一个生物滤池,污染物流通过渗滤处理床时得到净化。针对地下污染区营养物质缺乏,复氧困难与土壤颗粒结合紧密,微生物活力很低的特点,人工处理的强化措施有四条:①添加营养物,营养物以氮和磷为主,并加入各种微量元素,溶解在水中注入受污染的含水层;②复氧,地下复氧是极端缓慢的,强化处理采用的是在回灌水中曝气后注入的充氧方式,在地下污染相当严重的地方,还可采用纯氧和过氧化氢法复氧;③提高生物代谢能力,提高微生物代谢能力可通过就地激活地下微生物或引入新的适于降解污染物的菌种的办法来实现;④减小界面张力,用投加化学剂来减小污染物和地下水之间的界面张力,使污染物容易从吸附土壤上脱离,以提高其生物降解性,化学剂包括分散剂、表面活性剂、萃取剂和乳化剂。

图5.11 地下水污染的就地渗滤床法处理示意图

就地人工强化生物处理可使污染物浓度降低到小于或等于1mg/L,对地下水的恢复时间可比自然恢复时间提前5~10倍甚至更快。
(2)抽出处理是将被污染的地下水抽出后,在地表进行生物处理,其处理形式如图5.12(a)和5.12(b)所示。地下水的人工强化生物恢复技术目前已在发达国家中应用了,但是工程的规模都属于试验性工程,还有待于进一步的完善。

图5.12 污染的地下水抽出处理

周边500m。

长期以来,我国在重点区域、重点城市地下水动态监测和资源量评估方面取得了较为全面的数据。在集中式饮用水水源地保护攻坚战中也对饮用水水源及保护区的规范化建设等提出了要求,但尚未系统对我国地下水饮用水源地补给区污染现状及污染等级进行系统分析与划定,难以根据污染严重程度高效提出污染防治对策。

喝水注意事项

1、不喝生自来水,要煮沸再喝。

2、早上厨房用水前先放会儿水。

3、成人每天饮水量建议1500-1700ml。

4、晨起记得先喝杯水。

5、白开水、矿泉水、纯净水喝哪个都行,但不建议喝饮料。



地下水水源周边50m(一级保护区)不能搞建设,周边500m(二级保护区)不能有污染地下水的企业。各地应该划定保护区并设置标志,保护区范围不能低于上述要求。

以水源井中心为圆心,50米为半径的范围内为核心区,核心区中不能有明渠等,以水源井中心为圆心,500米为半径的范围内为补给区,补给区中不能有直渗化粪池等,但可以有明渠。


请问国家饮用水卫生标准规定地下水水源多少米不能有污染源?视频

相关评论:
  • 19456043049生活饮用水卫生标准gb5749-2006
    印怎叔法律分析:生活饮用水卫生标准是从保护人群身体健康和保证人类生活质量出发,对饮用水中与人群健康的各种因素(物理、化学和生物),以法律形式作的量值规定,以及为实现量值所作的有关行为规范的规定,经国家有关部门批准,以一定形式发布的法定卫生标准。2006年底,卫生部会同各有关部门完成了对1985年版《...

  • 19456043049矿泉水的国家标准规定
    印怎叔矿泉水的生产和销售需遵循国家标准《包装饮用水卫生标准》(GB8537-2018),该标准是在2018年修订的,对包装饮用水的卫生要求进行了规范。这一标准设定了矿泉水及其他包装饮用水的多项指标,包括:1. 微生物指标:规定了大肠杆菌群、菌落总数等病原微生物的限量。2. 理化指标:涵盖了pH值、溶解性固体...

  • 19456043049国家饮用水标准 国家饮用水标准是什么
    印怎叔国家饮用水的标准是溶解性总固体(TDS)小于等于1000mg\/L。TDS数值越高,就表示水中含有的杂质越多。TDS值也不是越低越好,还需要更加精密的仪器做进一步的检测。现在大家的日常用水都是集中供水,个人无法选择水质的好坏。知识拓展 控制饮用水卫生与安全的指标包括四大类:微生物学指标、水的感官性状和...

  • 19456043049我国城市生活饮用水卫生标准
    印怎叔生活饮用水的质量标准共包含35项指标。其中,感官性状和一般化学指标有15项,旨在确保饮用水的感官性状优良;毒理学指标和放射性指标各有15项和2项,以保证水质不对人体产生毒性和潜在危害;细菌学指标有3项,用于确保饮用水在流行病学上的安全性。法律依据包括:《中华人民共和国水法》第一条至第四条,...

  • 19456043049饮用水必须符合什么卫生标准
    印怎叔根据我国现行的生活饮用水卫生标准,合格的水应具备良好的感官性状,如透明、无色、无异味和臭味、无可见悬浮物。同时,水中不应含有病原微生物,化学和放射性物质的含量也应不会对人体健康造成危害。通常情况下,集中供应的自来水符合国家卫生标准,理论上可以生饮。然而,为抑制配水管网中细菌等微生物的...

  • 19456043049农村饮水安全评价准则
    印怎叔1. 水质标准:农村饮水必须符合《生活饮用水卫生标准》的国家规定,目前主要检测19项指标。2. 水量标准:根据《村镇供水工程设计规范》,不同地区和用水条件下的水量要求不同。农村每人每天应获得的基本水量分别为40-60升;干旱缺水地区的分散供水农村,每人每天的基本水量不得低于20升。3. 方便程度:在...

  • 19456043049中国饮用水国家标准是什么
    印怎叔中国饮用水国家标准请参照《中华人民共和国国家标准GB 5749—2006》以下信息仅供参考:生活饮用水卫生标准 1 范围 本标准规定了生活饮用水水质卫生要求、生活饮用水水源水质卫生要求、集中式供水单位卫 生要求、二次供水卫生要求、涉及生活饮用水卫生安全产品卫生要求、水质监测和水质检验方法。本标准适用于城乡...

  • 19456043049生活饮用水卫生的基本法律规定有哪些
    印怎叔2.2 在卫生管理方面,该办法强调了生活饮用水必须符合国家生活饮用水卫生标准,规定了供水单位职责和饮用水卫生许可证制度。同时,对新建、改建、扩建的供水工程项目的选址、设计审查、竣工验收规定必须有卫生行政部门参加。2.3 为有效地实施卫生监督,该办法明确了各级卫生行政部门在实施卫生监督活动中的职责...

  • 19456043049生活饮用水的卫生标准是多少
    印怎叔Hg)的含量应小于0.001毫克\/升,铅(Pb)的含量应小于0.1毫克\/升,以确保水中的有害物质含量在安全范围内。4. 细菌学指标:细菌总数应小于100个\/升,大链携菌肠杆菌(一种指示菌)的数量应小于3个\/升,以防止水源受到细菌污染。以上标准共同构成了生活饮用水的卫生标准,旨在保障人们的饮水安全。

  • 19456043049供水单位供应的饮用水必须符合什么卫生标准
    印怎叔依照本法提出的其他预防、控制措施的:供水单位供应的饮用水不符合国家规定的卫生标准的;拒绝按照卫生防疫机构提出的卫生要求,对传染病病原体污染的污水、污物、粪便进行消毒处理的;准许或者纵容传染病病人、病原携带者和疑似传染病病人从事国务院卫生行政部门规定禁止从事的易使该传染病扩散的工作的。

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网