爱因斯坦的成就都有哪些?相对论的主要内容是什么

来自:    更新日期:早些时候
爱因斯坦的相对论的具体内容~

相对论
相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

【相对论的提出过程】

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。

1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

经典力学中的速度合成法则实际依赖于如下两个假设:

1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;

2.两点的空间距离与测量距离所用的尺的运动状态无关。

爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生惠斯勒,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和惠斯勒获得了1993年诺贝尔物理奖。


【狭义相对论】

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

狭义相对论基本原理

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

狭义相对论效应

根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。

相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。

尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。

相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。

广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

相对论对于现代物理学的发展和现代人类思相的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。

狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。

广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。到现在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研究。

简介:相对论诞生已过百年,其间反对的声音从来没有停止过,本人对支持和反对的声音进行了整理归纳,总结,并提出一些新的观点,得到了个人的结论,那就是相对论描述的是现象,不是物理本质,光是普通的波,波粒二相性是介质中的粒子表现出来的。爱因斯坦的相对论有些正确,有些需要修正。
发表本文将观点普及,接受大家质疑,站在爱因斯坦的肩膀上完善相对论。

科学的定义是:对一定条件下物质变化规律的总结。
按照这个定义出发,我们可以知道:弦理论、11维空间理论、黑洞理论、光在真空中固定速度为C,都是未经证实的理论,不是科学理论。
科学家的定义是:发表一些独到的科学见解,并得到大部分科学研究人员认可的人,或得到权威科学研究机构认可的人。(科学家本是尊称无需准确定义)
物理学是智慧生物之间描述无生命物质运动变化规律的科学。
爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。
这里表明,相对论是因为光速的慢,引起的观测问题,对于思维速度无穷大的人,是不需要测量的,绝对同时有意义,且可以明白相对论是测量现象,与物理本质不同;对于思维速度不超过光速的人,此类问题无意义。

爱因斯坦在《论动体的电动力学》中关于光的假设有两个:任何光线在‘静止的’坐标系中都是以确定的速度V运动着,不管这道光线是由静止的还是运动的物体发射出来的;光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。
显然爱因斯坦没有意识到这两个假设的不同。
大学教材修正的假设:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
牛顿时空观认为距离和时间,在各个参照系测得的都相同,因此光速是相对的,可变的,而不是绝对的。
首先我们定义1光秒的含义:光在某种稳定介质中一秒所运动的距离。介质可以是水,这个长度是2.25*10^8米,介质可以是玻璃,这个长度是2.0*10^8米,甚至可以是声音一秒的运动距离,介质是空气,这个长度是340米,还可以是报道过的试验,在某种介质中,光速是17米/秒,在这种介质中1光秒长度为17米,这都不影响下面的论述。
假设有一个1光秒长的玻璃,我们从起点A发出光,一秒时到达B,我们说测得光速1光秒/秒,多次试验结果不变。现在我们处于一个以1米/秒相对玻璃运动的参照系,方向与光相同,一秒时,我们距离B为1光秒-1米,我们在这个参照系测得光运动的距离是1光秒-1米,光速是(1光秒-1)/秒。光速是相对的,这是牛顿时空观结果,速度是相对的,是以变化距离除以时间得到。我们在学习相对论之前,全是用的这种算法,例如A车对地面车速50公里每小时,B车30公里/小时,A相对于B的车速为50-30=20公里每小时。这是速度叠加原理。
所以说相对论必须假设光速不变才能推导,而在牛顿时空观中,是不能被证明光速不变的。很多人以为爱因斯坦相对论可以离开光速不变假设,这是不对的。爱因斯坦为了保证光速不变,需要修改长度(尺缩),时间(钟慢),就是认为运动的参照系测得的时间,与静止参照系不同,这已经是与牛顿理论完全不同了,而不是兼容关系。连中国大学教材都在相对论假设中增加了“真空中”,变为:在彼此作匀速运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。

爱因斯坦相对论理由1:19世纪末在光的电磁理论发展过程中,有人认为宇宙间充满以太,光是靠以太传播的。而迈克耳孙和莫雷实验证实,上述以太是不存在的。

此理论的提出是因为观测光从木星卫星到地球,速度大致相等,而无论地球向卫星运动还是背向卫星运动。小学我们就知道计算相遇时间,当相向时,是速度相加t=L/(v1+v2),反相时是速度相减t=L(v1-v2),只有v1大于v2才能追上。因此有人提出光是波,波的运动靠介质,而太空中是真空,所以必须假设存在一种在真空中也存在的物质作为光的介质,所以以太这种光介质被假设出来。由于地球没有特殊性,所以以太是独立于地球运动的。
当时的人不知道真空的相对性,在声音不能在真空中传播的试验中,如果我们加大产生声音的功率,或用设备提高声音的侦听能力,原来认定的真空,又不能称为真空。当时的人以为光是粒子,所以才有速度叠加的想法。当时的人以为宇宙中是真空,所以光的介质必须是一种特殊的,充满真空的,定名为以太。而今天,我们很容易想到,空气、玻璃、水,这些都是光传播的介质,光在这些介质中的运动表现,只与介质相关,而与测量参照系无关,举例来说,玻璃中的光相对玻璃是光速,与玻璃相对测量参照系的运动无关。由坐在车中测量远处钟声试验可知,车中的声速不变,与车向钟运动,还是远离大钟运动没有关系。以前认为的以太本来就没有必要,所以以太不存在的解释,并非只有相对论一种,莫雷实验也不能否定这种假设,因此它不能作为推导相对论时空观的充分证据。

爱因斯坦相对论理由2:1964年到1966年,欧洲核子中心实验结果:一种粒子以0.99975c的高速飞行,辐射出的光子,实验室速度仍是C。

实验仅能证明,在稳定的空气中,光速不变。而不能引申为相对任何参照系光速不变,因为这个实验中我们没有改变参照系。

爱因斯坦相对论理由3:洛伦兹变换:
因为书中的P事件对Y、Z轴有分量,光速要考虑球型,与书上结论不同(是错,但不是论述重点),因此为简单起见,假设P事件发生在X轴上。
O和O1两个坐标系,O坐标系相对于P事件静止,O1坐标系向P事件以V运动,P事件发生时,O与O1原点重合。
在O坐标系看来P事件发生在T时刻,位置是X,O1坐标系看来P事件发生在T1时刻,位置是X1。
X=X1+VT1
X1=X-VT
变换如下:
X=K(X1+VT1) (1式)
X1=K1(X-VT)
O与O1等价因此K=K1
X1=K(X-VT) (2式)
X=CT , X1=CT1 (3式)
1、2式相乘带入3式
XX1=K**2(X-VT)(X1+VT1)
K= 1 / (1-(V/C)**2)**(1/2)

也许很多人注意到了,在推导时,爱因斯坦用到的“在O坐标系看来P事件发生在T时刻,位置是X,O1坐标系看来P事件发生在T1时刻”,这说明相对论是“观测”效应,在任何一个相对论推导中,都是这样用的,如果改为“听来”就可以得到声速相对论了,如果改为“想”来,因想的速度无穷大,又不存在相对论效应。而且公式的推导,并不符合经典理论,大家应该注意,两式中的V默认为相等,而经典理论中速度的相对性是由绝对距离变化除以绝对时间得到,而在“看来”这种测量效应时,两者速度不等。以声音为例,对介质静止系听对介质做1/2声速运动的钟发出的声音,计算速度时用测量传回来的距离除以自己的钟显示的时间,计算速度为1/3声速,用传递回来的时间计算速度为1/2声速,运动的钟用自己的距离变化除以自己的时间,速度为1/2声速,除以传过来的时间,速度为声速。各参照系的钟示数,不代表时间。

爱因斯坦相对论理由4:一运动列车,列车中间一个光信号接收器,地面一个光信号接收器,当车上车下两个接收器重合时,车头和车尾各自发出一个闪光,地面接收器同时收到信号,而光传播是需要时间的,在这段时间内,车又向前运动了,因此列车中间的接收器先接收到车头的光,后接收到车尾光,结论:不同事件的同时性不是绝对的,只是相对概念。

相对论是以光速不变做为前提的,与参照系无关,因此才不用说光源是相对地面静止,还是相对列车静止,列车中间的接收器由于到头尾距离相等,因此按相对论也应该同时收到光信号。
我们认为本例的条件不全:
1 火车内的空气对火车静止,火车外的空气对地面静止,火车长度为光在空气中需要T秒通过,闪电发生时作为时间原点,两相对匀速运动的参照系可以建立相同的时间。结果:T/2秒,地面接收器与火车中接收器同时收到两端信号,符合相对论结论和伽利略变换,光速不变,与参照系无关。
2 火车内空气对地面静止(无厚度平板),火车速度为V。结果:地面接收器T/2秒同时收到两端信号,火车中(TC/2)/(C+V)秒收到车头信号,(TC/2)(C-V)秒收到车尾信号,符合速度叠加原理。
用声音代替光,可以做出这两个结果,而论述中为什么要选择违反相对论假设的一个结果呢?另外,如果我们用无穷大速度测量,则火车来不及运动,测量就已经完成,闪光还是同时的,所以很多人同爱因斯坦一样知道,相对论只是由于光速的慢而引入的测量效果,不知道爱因斯坦他老人家怎么讲着讲着,自己糊涂了,认为结果是真实的。

爱因斯坦相对论理由5:用车上人描述物体下落过程是直线,车下人描述物体下落过程是曲线来说明物体运动描述的相对性。

这是不对的。只要知道车速,车上人可以计算出车下人应该看到何种曲线,车下人也可以算出车上观测物体是否直线。

爱因斯坦相对论理由6:物理学定律在一切惯性参考系中都具有相同的数学表达形式。

这个叙述不严谨。一个相对地球做匀速直线运动的火车,可以近似看做一个惯性参考系,那么在火车上放氢气球与地面上放氢气球,运动轨迹不可能等价,根本不能用一个系数使其等价。在什么情况下才能认为等价呢?当空气作为静止参照系,地表静止物与火车相对空气做等速运动时等价。这时在空气参照系看两个氢气球都是直线上上升,两个运动参照系各自描述的上升斜率一致,有相同的数学表达形式。或者当空气相对地表静止时,火车对氢气球运动的描述,与空气对火车静止,地面对氢气球运动的描述等价。(介质相关性)

爱因斯坦相对论理由7:光在真空中的速度相等。(这个在相对论原文中是不存在的,应该是后人理解后添加的)

这一点我们不反对,它符合牛顿定律,但是从其它波的规律可知,任何波的传递,都需要介质,在达到一定的真空度时,波都无法传递,因此理论上光的传递也需要介质,我们还不能阻止光传递是因为我们还不能制造让光不能传递的真空度。光在真空中,速度也应该为0。如果真空中光速真是0,则构成洛伦兹变换推导错误的又一论据,因为等式两边同除以光速。

爱因斯坦相对论理由8:声音无法在真空中传播,光可以在星际空间传播

真空也是有相对性的,在真空中声音不能传播试验中,我们用助听器增强接收能力,或者提高放音的功率,又可以听到声音了。说明真空并没有阻挡传播,而是传播的能量不足以被接收者识别!这个现象我们也可以用光做,在一个较长距离内,低功率的光不能被接收,高功率的光能够被接收。甚至可以预言,可以被接收的微光,在介质被抽真空后,变得无法接收。

爱因斯坦相对论理由9:“光子”能量是一份份的,且具有动量,因此光是粒子。

由于声音能量,需要介质传递,当真空度降低的时候,需要有粒子过来,才能传递声能,没有粒子过来,就没有声能过来,因此试验中,声音能量也是一份份传递的。声音也具有动量,可没人承认“声子”是粒子。

爱因斯坦相对论理由10:“光子”经过太阳,光线弯曲

在光有粒子性这一点上,爱因斯坦与牛顿是一致的。但是光的波动说也能解释这个弯曲,而不需要假设光是粒子!我们知道光在经过密度不同的空气时会产生折射,最常见的现象是在阳光强烈的时候,远处公路路面象有水一样。太阳周围的大气,密度也是不均匀的,也会产生折射。不仅是光有折射现象,任何波,在介质密度不同的条件下,都会发生弯曲和折射。

爱因斯坦相对论理由11:速度接近光速,质量无限增加。有实验将粒子加速到接近光速,确实发现质量增加现象。

也有实验将粒子加速到超过一种介质中的光速,发现在突破光速的时候,也有类似超过声速时会发生的声障现象,他们称之为光障,必须克服光障的阻力,才能突破光速。联系两个实验,是否前一个实验错误的把光障阻力,当成质量增加?有待进一步核实。

爱因斯坦相对论理由12:爱因斯坦论述的光速不变,是在“静止”的参照系测得的(可以是相对做匀速直线运动的参照系,这就是伽利略相对性原理),但是,从一个参照系去测量另一个参照系是否还能够得到光速不变?牛顿理论将给出否定答案,而爱因斯坦并未解释为什么还是光速不变。
于是有人提出:各参照系测得的真空中的光速不变。似乎可以解决这个问题了。
但是除光外的其它波都是靠介质传递的,在各参照系中,测得的真空中所有机械波的速度都不变,都是0。这个不用假设,有这个前提,是否足够推导相对论?如果不能,说明真空假设的推论是有问题的,如果能,则说明任何波都有对应的相对论。这个结果结果奇怪吗?

爱因斯坦相对论双生子悖论:
两个相同飞船,各坐双生子中的一个,两飞船匀速直线远去,按相对论,动钟变慢,两人得出相反结论:对方在动,钟比自己慢。当两个飞船以同样加速度调转方向,变远离为靠近,到相遇时两钟应相同,而不是根据任何一个的相对论观点,对方的钟慢。这个结论即使用广义相对论解释,也应一致。
如果结论是相同,除了得出相对论动钟慢结论是观测效果,还能如何解释?

爱因斯坦相对论子杀父悖论:
按照爱因斯坦相对论结论,超过光速时间倒流,孩子可以回到出生前杀死父亲,则由于父亲已死,不会再生孩子,孩子则不会杀死父亲,父亲就不会死,也就会生孩子。这是个逻辑悖论。而修正后的相对论认为相对论效应只是观测效应,则不存在这个问题。

爱因斯坦空间悖论:
在狭义相对论的洛仑兹公式推导过程中,假设了空间平坦,才能使用线性方程,而广义相对论假设空间不平坦,洛仑兹变换则不能成立,也就失去了理论支持,说明广义相对论与狭义相对论,不能共用相对论原理。对此爱因斯坦没有解释。

超光速问题:
在七十年代前后,射电天文学家发现,宇宙中有4个致密的河外类星体射电源。河外射电星体有时会抛出一、两对射电星云——射电子源,这似乎是一次猛烈爆炸引起的,它们彼此高速分离,其中大约有半数出现超光速运动,甚至达到光速的5倍至10倍。
塞弗特星3C120的自身膨胀速度就超过了光速的4倍,类星体3C273,3C345,3C279各自的两个组成部分的分离速度是光速的7倍,10倍,19倍。

其它问题

由于重力等效加速度,加速度大时间慢。因此应该定义特定加速度的条件下的铯钟才是标准的。就象以前理解热胀冷缩,并没有认为热的时候空间变大一样。在高空飞行时,重力加速度对钟的影响,远大于相对论效应,也就是说,我们根据试验而不是理论计算出来的重力影响,完全可以淹没相对论效应,说相对论效应存在与不存在,只要在重力关系中进行调整,完全不存在理论问题。所以相对论效应在这个条件下是不能被证明的。

用声速测量接近声速运动的物理现象,其理论推导同相对论完全相同,也可以得到同相对论同样的结果,仅是用声速替换了光速。前提条件:声音介质中声音传播的速度不变。也有类似的钟慢尺缩现象。

在任意一种均匀稳定静止介质中传播的波,相对介质波速不变。
波速的计算方法为:波源发出波到接收器收到波的距离和时间之商。与波源发出波后的运动无关。

环球铯钟实验:以静止在实验室里的原子钟为标准,让一个原子钟绕地球一周,再与实验室里的原子钟比较。实验详情见:http://club.it.sohu.com/read-kpyd-8849-0-14.html
作者用一些相对论公式拟合了结果,结论是:"这表明,狭义相对论的时间膨胀效应只有在惯性系中才能给出正确的预言"。就是说本实验不能证明狭义相对论的时间膨胀效应。从另一个角度讲,相对论结论是动钟变慢,两个方向的钟,都是动钟,都应该变慢,没有理由一快一慢。

某种粒子高速时比静止时寿命长:粒子在运动过程中受到的撞击比静止时高出许多,为什么不能是撞击影响?静止的粒子,不断用空气分子撞击,寿命也应延长。

在真空中,“光子”又是如何具有横波的性质,左右摆动,而又不违反牛顿惯性定律,不受外力时做匀速直线运动?

既然光速不变前提只在真空有效,那么在这个前提条件下,推导出的相对论,也应只在真空有效,因此我们现在还没有相对论的适用条件。

相对论的限制条件和可扩展性
爱因斯坦提出两条假设:
1物理定律在一切惯性参考系中都具有相同的数学表达形式。
问题:一辆地面上匀速运动的车上,从车顶,自由掉下一个物体,车上的人,与车下的人所观测到的运动轨迹不是相同的数学表达形式。不能用系数简单的统一。
2光速不变原理: 在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
问题:人类没有得到过物理意义上的真空,结论先不争论。是否有更普遍的适用范围?
修正如下:
1物理学定律在相同的条件下重复实验,具有相同的数学表达形式。可以通过坐标变换进行不同参照系间的转换。
2在均匀稳定的介质中,任何波的运动速度都相同。换句话说,任何波的运动速度,仅与介质相关,而与波源发出波后的运动无关。
这两个假设其实是公理,不会有人反对,也就不用假设。

相对论变换与伽利略变换是兼容的,与速度叠加是相容的,不是对立关系。运动的火车头发出的声音,相对地面静止的空气来说,声速不变,符合相对论变换;相对火车头是符合速度叠加,是声速减车速。超音速飞机内部的声音,相对飞机还是声速,类似于光速火箭发出的光,对火箭还是光速,符合相对论变换和伽利略变换;相对地面速度是声速与飞机速度的合成,符合速度叠加。如果我们忽略介质,则得到哪种变换结果,都是可能的,这是爱因斯坦相对论没有讲清楚,而且非常迷惑人的原因。

光学畸变(假设在一定条件下光速稳定为C,这个现象具有普遍性,用声音实验可以得到同样结论)
如果一个钟,以0.5倍光速从原点远去,我们会看到什么现象呢?
一秒钟时,它距离原点0.5光秒距离,但这个事件我们在原点看见,需要再过0.5秒,于是我们发现,在本地钟1.5秒时,远处的钟在0.5光秒处。计算得知0.5/1.5=1/3光速,也就是我们测量到钟在以1/3光速前进。两秒钟时远处的钟在1光秒处,我们看到是在3秒时。也是1/3光速。
于是我们认为钟是以1/3光速匀速运动的,好象钟慢。
理想点以a倍光速远去,1秒钟远离a*C(光速)距离,在计时起位置要a秒传过来,到达a*C的事件将在a+1秒传到观察者,观察者认为速度为a*C/(1+a),速度永远小于光速。a为1时看到以1/2C远离。
理想点以a倍(a小于1)光速靠近,计时位置要x秒传过来,1秒后位置要x+1-a秒传过来,观察者认为速度为a/(1-a),快于光速。
理想点以光速接近,观察者突然看到它和它以前所有影像。
理想点以a倍(a大于1)光速接近,观察者先看到近端形象,后看到远端形象,以为远离。近处形象要x秒传过来,1秒前形象要1+x+a秒速度为a/1+a,速度越大越接近光速远离。
一条理想尺子,每0.1光秒处有一个刻度,一条静止线段,长0.1光秒,我们观察到线段与尺子重合,长度为0.1光秒。线段离我们远去,1秒后,到达尺子0.1至0.2光秒刻度处,可我们在0.1秒后才观察到近端到达0.1光秒刻度处,0.2秒后才看到远端到达0.2光秒刻度处,就是在1.1秒时我们看到近端到达0.1光秒刻度时,远端还在向0.2光秒刻度处运动,线段短了,好象尺缩短。1秒后线段停了,我们看到1.1秒时近端不动了,线段远端在1.1秒到1.2秒时继续运动,1.2秒后到达0.2光秒处。
线段在涨长!
同理,向我们运动时线段会变长。线段并没有变,是人的观测结果变了。
超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!
这就是著名的钟慢尺缩、超过光速时间倒流效应原理,爱因斯坦在其相对论论文中,从未提及这个效应,应该是爱因斯坦忽略了这个问题。我们认为,这个才是真正意义上的相对论,具有限制条件,在条件内,很多速度都有运动的相对论效应。

有人说这是在牛顿时空观没跳出来,没学懂相对论,但是要注意“懂”是相对的,在本文爱因斯坦相对论论述中,哪里有错误?本论述连牛顿的光粒子说一起否,是盲从牛顿应有的表现吗?而本文提出的问题,谁又考虑过?这些问题都不知道,就是相对本文作者属于“无知”,盲目相信爱因斯坦或大学教材就是“迷信”,科学一直在发展,光的粒子说、波动说几次交换主导地位的历史表明,新的学说有可能支持旧的观点,但那不是退步,而是进步。

结论
综上所述,相对论入门中的例子,每个都值得怀疑,更为可信的结论是:相对论主要结果是光速观测结果,不等于物理本质,因此它并不是错误的,也是可以通过实验证实的,但它不能准确描述物理本质,是有待完善的理论,爱因斯坦只是列错了算式;波粒二相性是波传递必须依靠的介质中的粒子表现出来的,因此光也是普通的波,与其它波没有本质区别。按照修正后的相对论,与所有其它体系兼容,且不存在悖论,有关相对论的争议,完全可以平息。

伽利略相对性原理:
一切彼此做匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的。并不存在一个比其它惯性系更为优越的惯性系。在一个惯性系内部所作的任何力学实验都不能够确定这一惯性系本身是在静止状态,还是在作匀速直线运动。

参考资料:
http://www.bjxdl.net/bbs/List.asp?BoardID=2 (北京相对论联谊会)
http://www.kjlw.cn/index.asp (中国科技论文网)
《时间简史》
《万物简史》
《图说相对论》
《普通物理学1》大学教材

附以前引用过超距作用做为论据:
超距作用:处于纠缠态的两个粒子,自旋态一致,将其中一个改变,另一个几乎“同时”改变,而不管它们相距多远,人们还没有测出信号传递的速度,但肯定比光速快。
另一说法:处于纠缠态的两个粒子,自旋态一致,将它们相互远离,测出其中一个的自旋态,立刻就知道另一个的状态,而不论它们相距多远。
第一个说法,是超光速信息传递,第二个说法更可信,它没有信息传递,不违反相对论,而且它用的是“知道”,知道的速度是思维速度,可以大于光速,在这种速度下,爱因斯坦都认为相对论效应不存在。

提出相对论及质能方程
解释光电效应
推动量子力学的发展
发明了原子弹
广义论的验证
爱因斯坦提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。直到最近才增加了第四个验证:(4)雷达回波的时间延迟。 (1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。 (2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hv和质能公式E=Mc^2 求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。引起误差的主要原因是太阳大气对光线的偏折。最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。精密测量进一步证实了相对论的结论。 (3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。 (4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。
相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。

爱因斯坦是德裔美国物理学家(拥有瑞士国籍),思想家及哲学家,犹太人,现代物理学的开创者和奠基人,相对论——“质能关系”的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。 1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。

主要成就:提出相对论及质能方程
解释光电效应
推动量子力学的发展

代表作品:《论动体的电动力学》,《广义相对论的基础》

阿尔伯特爱因斯坦成就:
质能方程式,E=mc^2.能想到就证明是天才。发现原因:火车有一定的质量,如果要让火车跑的更快些,就要燃烧更多的煤,让水更热些,不过在加煤也无法把火车加到光速。他联想到如果要把一个很小质量的物体加到光速,就需要很大的能量。……方程式还导致了另外一种结果1945年8月,美国向日本投掷了曼哈顿计划的终极产物”原子弹“。原子弹其原理就是相对论,原理如下:奥本海默(原子弹之父)利用爱因斯坦相对论造出世界上最强大的武器,核武器核武器,关键在核,利用不稳定重核(U235……)的分裂时一瞬间释放的巨大能量的原理制造的。
以及解释光电效应(详细不讲了很多高等物理教材上都有)正是应为这个让他获得诺贝尔奖的,光子也是他提出的,爱因斯坦方程式。都是他的杰作。至马克思普朗克提出量子论以后用理论的方式保卫了量子力学。

相对论主要内容:大质量的物体扭曲了宇宙空间。。。行星围着太阳转是因为太阳很大扭曲了周围的宇宙空间,导致的。就像一块布中间放个大石头凹下去一样的道理。只有相对论才能很准确的解释水星轨道问题,牛顿的万有引力是错的,首先力不是瞬间的,更不是拉力(引力即是吸)。所以牛顿错了。证明方法;光线的弯曲。

爱因斯坦

20世纪最伟大的物理学家阿尔伯特·爱因斯坦1879年3月14日出生在德国西南的乌耳姆城,一年后随全家迁居慕尼黑。爱因斯坦小时候并不活泼,三岁多还不会讲话,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真的思考。

1905年的奇迹

1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。

1921年,爱因斯坦因为“光电效应定律的发现”这一成就而获得了诺贝尔物理学奖。

成功的秘诀

有一次,一个美国记者问爱因斯坦关于他成功的秘决。他回答:“早在1901年,我还是二十二岁的青年时,我已经发现了成功的公式。我可以把这公式的秘密告诉你,那就是A=X+Y+Z! A就是成功,X就是努力工作,Y是懂得休息,Z是少说废话!这公式对我有用,我想对许多人也是一样有用。”

科学成就的第二个高峰

在1915年到1917年的3年中,是爱因斯坦科学成就的第二个高峰,类似于1905年,他也在三个不同领域中分别取得了历史性的成就。除了1915年最后建成了被公认为人类思想史中最伟大的成就之一的广义相对论以外,1916年在辐射量子方面提出引力波理论,1917年又开创了现代宇宙学。

最伟大的科学家的风格

爱因斯坦因为在科学上的成就,获得了许多奖状以及名誉博士的授予证书。如果一般人就会把这些东西高高挂起。可是爱因斯坦把以上的东西,包括诺贝尔奖奖状一起乱七八糟地放在一个箱子里,看也不看一眼。英费尔德说他有时觉得爱因斯坦可能连诺贝尔奖是什么意义都不知道。据说他在得奖的那一天,脸上和平日一样平静,没有显出特别高兴或兴奋。

巨星陨落


爱因斯坦的成就都有哪些?相对论的主要内容是什么视频

相关评论:
  • 13710083223爱因斯坦的成就都有哪些?相对论的主要内容是什么
    雷咬货原子弹其原理就是相对论,原理如下:奥本海默(原子弹之父)利用爱因斯坦相对论造出世界上最强大的武器,核武器核武器,关键在核,利用不稳定重核(U235……)的分裂时一瞬间释放的巨大能量的原理制造的。以及解释光电效应(详细不讲了很多高等物理教材上都有)正是应为这个让他获得诺贝尔奖的,光子也是...

  • 13710083223爱因斯坦的成就有哪些
    雷咬货爱因斯坦的成就主要包括创立了相对论和对量子力学的发展做出了重要贡献。他被誉为20世纪最伟大的理论物理学家之一。相对论是爱因斯坦最著名的科学贡献,分为狭义相对论和广义相对论。1905年,他提出了狭义相对论,这一理论改变了我们对时间、空间和物质的理解。它引入了新的概念,如时间膨胀和长度收缩,以及...

  • 13710083223爱因斯坦都发明了什么?
    雷咬货主要成就如下:1、相对论 2、光电效应 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应(Photoelectric effect)。3、能量守恒 E=mc²,物质不灭定律,说的是物质的质量不灭;能量...

  • 13710083223爱因斯坦的成就有哪些 爱因斯坦人物介绍
    雷咬货1、爱因斯坦的成就有:光量子理论、 E=mc2质能方程(E=mc2,物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒)、布朗运动、狭义相对论、广义相对论。2、光电效应由德国物理学家赫兹于1887年发现,而正确的理论解释则由爱因斯坦提出。爱因斯坦主张,光的能量并非均匀分布,而是负载...

  • 13710083223爱因斯坦是赫赫有名的物理学家他对世界科学有哪些贡献
    雷咬货爱因斯坦指的是阿尔伯特·爱因斯坦(Albert Einstein),他是20世纪最重要的科学家之一,也是相对论和量子力学的创立者之一。爱因斯坦于1879年出生在德国的乌尔姆城,后来成为了瑞士公民。爱因斯坦以他的相对论理论而闻名于世。1905年,他发表了著名的相对论论文,其中包括了狭义相对论和著名的质能方程E=mc&#...

  • 13710083223爱因斯坦的主要成就是什么?
    雷咬货主要成就:1、相对论狭义相对论的创立:爱因斯坦在16岁时就对光波和以太的问题产生了兴趣。他深入研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但他发现所有人试图证明以太存在的试验都是失败的。他提出了光速不变的假设,并在此基础上建立了狭义...

  • 13710083223爱因斯坦的研究成果有哪些
    雷咬货1、相对论:1905年5月的一天,爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。2、能量守恒:爱因斯坦认为,物质的质量是惯性的量度,能量是运动的...

  • 13710083223爱因斯坦的科学成就
    雷咬货爱因斯坦是20世纪最著名的科学家之一,他在物理学领域的贡献和科学成就对现代科学产生了深远的影响。以下是爱因斯坦的一些主要科学成就:1. 相对论理论:爱因斯坦最著名的科学贡献是提出了狭义相对论和广义相对论。狭义相对论(1905年)改变了物理学对时间和空间观念,揭示了时间和空间的相互联系,提出了著名...

  • 13710083223请问各位大侠爱因斯坦这一生除了相对论外还有什么成就?
    雷咬货光量子假说、狭义相对论、布朗运动的统计性解释、广义相对论、现代宇宙学、对量子力学的建立和发展都做出过重要的贡献、首先将量子论用于比热的研究、用量子论的方法第一个提出激光的理论、大力支持德布罗意提出物质波假说、大力支持玻色,并与他一道提出了著名的玻色-爱因斯坦统计(这是量子力学的两大统计...

  • 13710083223爱因斯坦的发明有哪些
    雷咬货爱因斯坦的发明有相对论、光电效应、定温度热力学第二定律、能量和质量的等价性、电子理论等。相对论:这是爱因斯坦最著名的成就之一,他提出了一种新的物理学理论,用于解释时间、空间和质能之间的关系。光电效应:这是爱因斯坦在1905年发明的一种现象,表明光是电磁波,并且可以被用于电力生产。定温度热力...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网