求诺贝尔物理学奖获得者威廉·维恩幼年时的故事或事迹。谢谢

来自:    更新日期:早些时候
1987到1990年诺贝尔物理学奖获得者的主要事迹,生活轶事~

1987年约翰内斯·贝德诺尔茨和卡尔·米勒在发现陶瓷材料的超导性方面的突破”获得诺贝尔物理学奖,1988年梅尔文·施瓦茨和利昂·莱德曼和施泰因贝格尔“中微子束方式,以及通过发现子中微子证明了轻子的对偶结构”获得诺贝尔物理学奖。

1989年诺曼·拉姆齐和汉斯·格奥尔格·德默尔特和沃尔夫冈·保罗“发展离子陷阱技术”获得诺贝尔物理学奖,1990年杰尔姆·弗里德曼和亨利·肯德尔和理查·泰勒,他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”获得诺贝尔物理学奖。
汉斯·格奥尔格·德默尔特德国-美国物理学家,1989年获诺贝尔物理学奖。汉斯·格奥尔格·德默尔特出生于德国格尔利茨,在柏林长大的。1940年中学毕业后他在一个机动防空部队中当兵。他于斯大林格勒战役中幸存,然后被陆军遣送到布雷斯劳大学学习物理。
1944年他被派往西部战线,在突出部之役中被美军俘虏。1946年他被释放后继续在哥廷根大学学习,他的导师包括理查德·贝克、沃纳·海森堡、马克斯·冯·劳厄、沃尔夫冈·保罗和马克斯·普朗克。在普朗克的葬礼上他甚至被选为抬棺材的人之一。
1948年他大学毕业,他的毕业论文是关于汤普森质谱。1949年他获得博士学位,他的博士论文的题目是《碘化物晶体中的核四极频率》。他首先在杜克大学待了两年后1952年去西雅图的华盛顿大学。1955年他在华盛顿大学成为助理教授,1958年提升为破例教授,1961年称为正式教授。2002年他退休。

卡尔·费迪南德·布劳恩(Karl Ferdinand Braun,1850年6月6日—1918年4月20日),德国物理学家,诺贝尔物理学奖获得者,阴极射线管的发明者。

早年经历

1850年6月6日,布劳恩出生在德国,父亲是个公务员。1868年开始在德国马尔堡大学学习数学和自然科学,1869年转去柏林大学研究天线,1872年获得物理学博士学位。

1873年,他通过国家中学教师考试,在莱比锡的一家中学教数学和自然科学,在那里他同时进行对振荡电流的科学研究。1874年,他发现某些金属硫化物具有使电流单方向通过的特性,并利用半导体的这个特性制成了无线通信技术中不可或缺的检波器,开创了人类研究半导体的先例。

布劳恩先后在马尔堡大学(1876年)、斯特拉斯堡大学(1880年)和卡尔斯鲁厄大学(1883年)任物理学副教授和教授,1887年又应图宾根大学的邀请负责建立物理学研究所,1895年他回到斯特拉斯堡大学任物理研究所主任和教授,把主要精力用于进行电学研究。

发明阴极射线管

布劳恩制造了第一个阴极射线管(缩写CRT,俗称显像管)示波器。现在CRT被广泛应用在电视机和计算机的显示器上,在德语国家,CRT仍被称为“布劳恩管”(德语:Braunsche Röhre)。

19世纪后半叶,电学发展到了鼎盛时期。1858年,德国物理学家普吕克尔[2]观察到一种阴极荧光现象,1876年,德国物理学家哥尔茨坦[3]确认这一种阴极射线。在追踪阴极射线的过程中,1895年,德国物理学家伦琴意外地发现了X光。1897年,英国物理学家汤姆生,对阴极射线进行了精确的实验研究,并将其命名为“电子”。就是在这个背景下,19世纪90年代,当布劳恩得知人们正在研究阴极射线时,立即投身于这一新领域。

第一个阴极射线管诞生在1897年的德国卡尔斯鲁厄。布劳恩在抽成真空的管子一端装上电极(右图中5),从阴极发射出来的电子在穿过通电电极时,因为受到静电力影响聚成一束狭窄的射线,即电子束,称为阴极射线(右图中6),管子侧壁分别摆放一对水平的和一对垂直的金属平行板电极(右图中3),水平的电极使得电子束上下垂直偏转运动,垂直的电极使得电子束左右水平偏转运动。管子的另一端均匀地涂上一层硫化锌或其他矿物质细粉,做成荧光屏(右图中8),电子束打在上面可以产生黄绿色的明亮光斑。随着侧壁上摆放的平行板电极电压的变化,电子束的偏转也随之变化,从而在荧光屏上形成不同的亮点,称为“扫描”。荧光屏上光斑的变化,呈现了控制电子束偏转的平行板电极电压的变化,也就是所研究电波的波动图象,这是示波器的雏形和基础,它使得对电波的直观观察成为可能。

布劳恩最初设计的阴极射线管还不十分完美,它只有一个冷阴极,管子也不是完全真空,而且要求十万伏特的高压来加速电子束,才能在荧光屏上够辨认出受偏转影响后的运动轨迹,此外,电磁偏转也只有一个方向。但是工业界很快对布劳恩的这个发明产生了兴趣,这使得阴极射线管得到了很好的继续发展。1889年,布劳恩的助手泽纳克(Zenneck)为阴极射线管增加了另一个方向的电磁偏转,此后又相继发明了热阴极和高真空。这使得阴极射线管不仅可以用在示波器上,1930年起成为了显示器的重要部件,为后来电视、雷达和电子显微镜的发明奠定了重要基础,如今仍被广泛应用于计算机、电视机和示波器等的显像器上。

在发明阴极射线管的同时,布劳恩还开始了他在无线电报方面的研究。

无线电接收机

当时的电报技术存在一个致命的问题,就是缺少可靠的电报接收机。布劳恩是物理学家出身,有着严谨的实验作风,他所做的实验条件都是可重复再现的。他改用晶体探测器,使接收机的敏感度提高了很多。直到发明了电子管,布劳恩的晶体探测器才被淘汰了,即便如此,晶体探测器仍在简易接收机中使用了很长一段时间。最初的超高频雷达设备也使用了晶体探测器。

无线电发射机

在发射机方面,布劳恩同样贡献很大,马可尼主要是凭借经验和试探发明了发报机,而布劳恩在马可尼发明的基础上,对发报机进行了物理学背景研究,并对马可尼的发报机做了根本性的改造。比如,他发现了产生高功率低阻尼电波的方法,原本马可尼发报机的振荡线路和天线是合在一起的,这种线路产生的功率很低,布劳恩把两者分开,发明了磁耦合天线,初级线圈由电容器和火花隙构成,耦合上一个感性的天线,电容电路的振荡在辐射天线中产生了极大的电流,这使得整个系统的发射功率大大增加,增大了通信距离,而且无线电接收机和发射机不需要直接与天线相连,减少了受到雷击的危险。如今,磁耦合天线仍应用在收音机、电视机、电台和雷达上。

1899年时候的发射机可以传输20千米,完成了横跨英吉利海峡之间的无线电通讯,真正实现了“远距离电报通信”,是人类第一次用电磁波传送信息,电文是:“你的来电收妥无误,而且很清楚”[4]。这个传输距离每个月都在被打破,1901年马可尼又用布劳恩的发射机成功地从英国科尔努埃尔发出电报,跨越大西洋上空到达加拿大纽芬兰,建立了从英国到北美的通信线路。

布劳恩还发明了定向天线。定向性也是电报技术的一个难点,发射机需要定向发射,接收机也需要定向接收,布劳恩是最先实现定向发报的人之一,他发明的定向天线只在一个指定的方向上发射电波,从而减少了能量的无谓消耗。他还把发射机的频带调得很窄,从而减小了不同发射机之间的干扰。

诺贝尔物理学奖

因为对无线电报的改进,布劳恩同发明无线电报的马可尼分享了1909年的诺贝尔物理学奖。马可尼的发明曾多次借用到布劳恩的专利。

逝世

第一次世界大战爆发后,英国控制的马克尼无线电公司企图关闭纽约的无线电发射站,切断美国和德国的通信,并对位于长岛的塞维尔无线电发射站的专利权提出起诉。当时美国尚未加入战争,64岁的布劳恩抱病冲破英国的封锁前往美国,帮助维护德国设在纽约的无线电站,并在纽约出庭为他曾做过的实验作证。其间,美国介入第一次世界大战,布劳恩成为了“敌对国公民”[5],美国不允许他回到斯特拉斯堡,只能生活在布鲁克林,直到1918年第一次世界大战结束前,布劳恩逝世于家中。

  维恩1864年1月13日出生在东普鲁士(现俄罗斯)的菲施豪森(Fischhausen),他的父亲卡尔·维恩(Carl Wien)是地主。1879年在拉斯滕堡(Rastenburg)、1880年至1882年在海德堡读中学。中学毕业后,1882年在哥廷根大学学习数学,同年转去柏林大学。1883年至1885年在赫尔曼·冯·亥姆霍兹的实验室工作,1886年获得博士学位,论文题目是光对金属的衍射,以及不同材料对折射光颜色的影响。此后,由于维恩的父亲生病,维恩不得不回去帮助管理他父亲的土地。期间他有一个学期跟随亥姆霍兹,1887年完成了金属对光和热辐射的导磁性实验。

  一直到1890年,父亲的土地变卖后,维恩回到亥姆霍兹的身边,作为他的助手在国家物理工程研究所工作,为工业课题做研究。1892年在柏林大学获得大学任教资格。1896年前往亚琛工业大学物理学教授,以接替菲利普·莱纳德,1899年在吉森大学任物理学教授,1900年赴维尔茨堡大学接替伦琴,同年出版了教科书《流体力学》(Hydrodynamik)。1902年,他曾被邀请接替玻耳兹曼出任莱比锡大学的物理学教授,1906年又被邀请接替保罗·德鲁德(Paul Drude)出任柏林大学的物理学教授,但他拒绝了这两个邀请。1920年底前往慕尼黑,再次接替伦琴,直到1928年逝世。

  1898年与路易丝·梅勒(Luise Mehler)结婚,有4个孩子。威廉·维恩的表弟马克斯·维恩(Max Wien)是高频电子技术的先驱。

  诺贝尔奖官方网站关于威廉·维恩生平介绍:
  Wilhelm Wien
  The Nobel Prize in Physics 1911
  Biography
  Wilhelm Wien was born on January 13, 1864 at Fischhausen, in East Prussia. He was the son of the landowner Carl Wien, and seemed destined for the life of a gentleman farmer, but an economic crisis and his own secret sense of vocation led him to University studies. When in 1866 his parents moved to Drachstein, in the Rastenburg district of East Prussia, Wien went to school in 1879 first at Rastenburg and later, from 1880 till 1882, at the City School at Heidelberg. After leaving school he went, in 1882, to the University of Göttingen to study mathematics and the natural sciences and in the same year also to the University of Berlin. From 1883 until 1885 he worked in the laboratory of Hermann von Helmholtz and in 1886 he took his doctorate with a thesis on his experiments on the diffraction of light on sections of metals and on the influence of materials on the colour of refracted light.

  His studies were then interrupted by the illness of his father and, until 1890, he helped in the management of his father's land. He was, however, able to spend, during this period, one semester with Helmholtz and in 1887 he did experiments on the permeability of metals to light and heat rays. When his father's land was sold he returned to the laboratory of Helmholtz, who had been moved to, and had become President of, the Physikalisch-Technische Reichsanstalt, established for the study of industrial problems. Here he remained until 1896 when he was appointed Professor of Physics at Aix-la-Chapelle in succession to Philipp Lenard. In 1899, he was appointed Professor of Physics at the University of Giessen. In 1900 he became Professor of the same subject at Würzburg, in succession to W.C. Röntgen, and in this year he published his Lehrbuch der Hydrodynamik (Textbook of hydrodynamics).

  In 1902 he was invited to succeed Ludwig Boltzmann as Professor of Physics at the University of Leipzig and in 1906 to succeed Drude as Professor of Physics at the University of Berlin; but he refused both these invitations.

  In 1920 he was appointed Professor of Physics at Munich, where he remained throughout the rest of his life.

  In addition to the early work already mentioned, Wien worked, at the Physikalisch-Technische Reichsanstalt, with Holborn on methods of measuring high temperatures with the Le Chatelier thermoelements and at the same time did theoretical work on thermodynamics, especially on the laws governing the radiation of heat.

  In 1893 he announced the law which states that the wavelength changes with the temperature, a law which later became the law of displacement.

  In 1894 he published a paper on temperature and the entropy of radiation, in which the terms temperature and entropy were extended to radiation in empty space. In this work he was led to define an ideal body, which he called the black body, which completely absorbs all radiations. In 1896 he published the formula of Wien, which was the result of work undertaken to find a formula for the composition of the radiation of such a black body. Later it was proved that this formula is valid only for the short waves, but Wien's work enabled Max Planck to resolve the problem of radiation in thermal equilibrium by means of quantum physics. For this work Wien was awarded the Nobel Prize for Physics for 1911. An interesting point about it is that this theoretical work came from an Institute devoted to technical problems and it led to new techniques for illumination and the measurement of high temperatures.

  When Wien moved, in 1896, to Aix-la-Chapelle to succeed Lenard, he found there a laboratory equipped for the study of electrical discharges in vacuo and in 1897 he began to work on the nature of cathode rays. Using a very high vacuum tube with a Lenard window, he confirmed the discovery that dean Perrin had made two years earlier, that cathode rays are composed of rapidly-moving, negatively-charged particles (electrons). And then, almost at the same time as Sir J.J. Thomson in Cambridge, but by a different method, he measured the relation of the electric charge on these particles to their mass and found, as Thomson did, that they are about two thousand times lighter than the atoms of hydrogen.

  In 1898 Wien studied the canal rays discovered by Goldstein and concluded that they were the positive equivalent of the negatively-charged cathode rays. He measured their deviation by magnetic and electric fields and concluded that they are composed of positively-charged particles never heavier than electrons.

  The method used by Wien resulted some 20 years later in the spectrography of masses, which has made possible the precise measurement of the masses of various atoms and their isotopes, necessary for the calculation of the energies released by nuclear reactions. In 1900 Wien published a theoretical paper on the possibility of an electromagnetic basis for mechanics. Subsequently he did further work on the canal rays, showing, in 1912, that, if the pressure is not extremely weak, these rays lose and regain, by collision with atoms of residual gas, their electric charge along their course of travel. In 1918 he published further work on these rays on the measurement of the progressive decrease of their luminosity after they leave the cathode and from these experiments he deduced what classical physics calls the decay of the luminous vibrations in the atoms, which corresponds in quantum physics to the limited duration of excited states of atoms.

  In this, and other, respects Wien's work contributed to the transition from Newtonian to quantum physics. As Max von Laue wrote of him, his "immortal glory" was that "he led us to the very gates of quantum physics".

  Wien was a member of the Academies of Sciences of Berlin, Göttingen, Vienna, Stockholm, Christiania and Washington, and an Honorary member of the Physical Society of Frankfurt-on-Main.

  In 1898 he married Luise Mehler of Aix-la-Chapelle. They had four children. He died in Munich on August 30, 1928.

  From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

  This autobiography/biography was first published in the book series Les Prix Nobel. It was later edited and republished in Nobel Lectures. To cite this document, always state the source as shown above.

威廉·维恩(Wilhelm Carl Werner Otto Fritz Franz Wien ,1864年1月13日—1928年8月30日),德国物理学家,研究领域为热辐射与电磁学等。1893年,维恩经由热力学、光谱学、电磁学和光学等理论支援,发现了维恩位移定律,并应用于黑体等学术理论,揭开量子力学新领域。1911年,他因对于热辐射等物理法则贡献,而获得诺贝尔物理学奖。

火星上有一个陨石坑以他的名字命名。

出生 1864年1月13日

俄罗斯普里莫尔斯克
逝世 1928年8月30日
德国慕尼黑

研究领域 物理学家
著名 黑体辐射

国籍 德国

居住地 德国

研究机构 吉森大学
维尔茨堡大学
慕尼黑大学

母校 格奥尔格-奥古斯特格丁根大学柏林大学

导师 赫尔曼·冯·亥姆霍兹

获奖 诺贝尔物理学奖(1911年)


求诺贝尔物理学奖获得者威廉·维恩幼年时的故事或事迹。谢谢视频

相关评论:
  • 14772071099第一个获得诺贝尔奖的人是谁
    匡丹咐威廉·康拉德·伦琴1895年11月8日发现了X射线,为开创医疗影像技术铺平了道路,1901年被授予首次诺贝尔物理学奖。威廉·康拉德·伦琴成为诺贝尔奖金第一位物理学奖金获得者,他立即将此项奖金转赠威茨堡大学物理研究所为添置设备之用。此后根据不完全统计,他生前和逝世后所获得的各种荣誉不下于150项,若对...

  • 14772071099诺贝尔物理学奖获得者的获奖名单
    匡丹咐诺贝尔物理学奖获奖者名单(1901-2014) 年份 获奖者 国籍 获奖原因 1901年 威廉·康拉德·伦琴 德国 “发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年 亨得里克·洛仑兹 荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应) 彼得·塞曼 荷兰 1903年 亨利·贝克勒...

  • 14772071099世界第一个获得诺贝尔奖的人,是什么影响了他的一生?
    匡丹咐威廉·康拉德·伦琴在1895年11月8日发现了X射线,为开创医疗影像技术铺平了道路,1901年被授予首次诺贝尔物理学奖。这一发现不仅对医学诊断有重大影响,还直接影响了20世纪许多重大科学发现。例如安东尼·亨利·贝克勒尔就因发现天然放射性,与居里夫妇共同获得1903年的诺贝尔物理学奖。到今天,为了纪念伦琴的...

  • 14772071099约翰·威廉·斯特拉特简介
    匡丹咐死亡:1919年6月30日(77岁)事件中的约翰·威廉·斯特拉特1873-06-12约翰·威廉·斯特拉特[罗利勋爵]成为英国皇家学会(1904-12-10)约翰·威廉·斯特拉特[瑞利勋爵]和威廉·拉姆齐获得诺贝尔物理学奖,因为他们在Twitter上的Facebook分享上发现了氩的分享著名的诺贝尔奖获得者亚历山德尔·索尔仁尼琴埃米尔·...

  • 14772071099物理学家x射线获得诺贝尔奖的是谁
    匡丹咐威廉康拉德伦琴 1901年他成为诺贝尔奖金第一位物理学奖金获得者,他立即将此项奖金转赠威茨堡大学物理研究所为添置设备之用。此后根据不完全统计,他生前和逝世后所获得的各种荣誉不下于150项,若对伦琴的成就作出估价是很困难的。伦琴的工作是在简陋的环境中完成的。一个不大的工作室,窗下是张大桌子,...

  • 14772071099首届诺贝尔奖获得者都是谁?
    匡丹咐首届诺贝尔奖获得者有德国的威廉·伦琴(物理学奖),他发现了X射线;荷兰的范托夫(化学奖),他发现了化学动力学定律和渗透压定律;德国的贝林(生理学或医学奖),他在血清疗法的研究方面卓有成就;法国的普吕多姆(文学奖),他在诗歌创作方面颇有建树;杜南(“和平”奖),他建立了红十字会,帕西...

  • 14772071099历届诺贝尔物理学奖获得者!谢谢了,大神帮忙啊
    匡丹咐1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并用伦琴做为辐射量的单位)1902年亨得里克·安顿·洛伦兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年安东尼·亨利·贝克勒尔法国“发现天然放射性”皮埃尔·居里法国“他们对...

  • 14772071099第一个获得诺贝尔物理学奖的人是谁
    匡丹咐第一个获得诺贝尔物理学奖的是X射线的发现者,德国物理学家威廉·康拉德·伦琴。1901年因发现X射线获首届诺贝尔物理学奖,他在1895年11月8日抓住一个偶然机会发现了X射线,X射线的发现引起了物理学的革命 导致现代物理学的诞生,X射线也称为伦琴射线。该奖项旨在奖励那些对人类物理学领域里作出突出贡献的...

  • 14772071099谁是第一位诺贝尔物理学奖获奖者?
    匡丹咐第一位获得诺贝尔物理学奖的科学家 1901年诺贝尔物理学奖 ——X射线的发现 威廉·康拉德·伦琴 1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Ro tgen, 1845---1923), 以表彰他在1895年发现的X射线。 1895年,物理学已经有了相当的发展,它的几个主要部门--牛顿力学、热 力学和...

  • 14772071099父子都获得过诺贝尔奖的有哪些?
    匡丹咐自诺贝尔奖设立以来,已经出现了6对父子获得过诺贝尔奖:1、布拉格父子 威廉·亨利·布拉格(1862~1942)与其子威廉·劳伦斯·布拉格(1890~1970)为英国著名物理学家,通过对X射线谱的研究,提出晶体衍射理论,建立了布拉格公式(布拉格定律),并改进了X射线分光计。1915年诺贝尔物理学奖授予英国伦敦大学的...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网