盆地沉积相与地层格架分析方法

来自:    更新日期:早些时候
岩性油气藏国内外研究现状~

  岩性油气藏勘探方法与技术

  1.岩性油气藏勘探现状及勘探前景

  (1)勘探现状

  随着中国陆上含油气盆地逐步进入高成熟勘探阶段,探索岩性油气藏的重要性也日趋明显。岩性油气藏是目前中国陆上油气勘探的四大重要领域之一(其他3个领域是前陆冲断带油气藏勘探、叠合盆地中下部组合和老区精细勘探)。也是目前中国陆上实现油气增储上产的重要现实领域。从中国陆上近年来岩性油气藏探明储量规模来看,已经从90年代初的20%逐步上升到目前的55%左右,初步显示出岩性油气藏在增储上产方面的重要意义。从具体盆地来看:在松辽、鄂尔多斯、渤海湾等盆地年增储规模均在亿吨以上;在准噶尔、塔里木、四川等盆地其增储地位日显重要;在二连、海拉尔、柴达木等盆地成为新的增储领域;在酒泉、吐哈等盆地此方面勘探也有新的发现。总体来看中国陆上大部分含油气盆地在岩性油气藏勘探领域都取得了突破性进展。勘探实践证明,中国陆上绝大部分含油气盆地应具有发育岩性油气藏的良好地质背景。

  (2)勘探前景

  从中国陆上主要含油气盆地剩余油气资源量来看,七大盆地(松辽、渤海湾、鄂尔多斯、准噶尔、塔里木、柴达木、四川盆地)剩余石油地质资源总量179.2亿t,岩性地层91.3亿t,占总石油地质资源量的51%。具体到各个盆地来看:松辽盆地剩余资源41。3亿t,其中岩性一地层26.6亿t;渤海湾盆地剩余资源32.7亿t,其中岩性一地层12.7亿t;鄂尔多斯盆地剩余资源33.7亿t,其中岩性一地层27.6亿t;准噶尔盆地剩余资源20.3亿t,其中岩性一地层10.3亿t;塔里木盆地剩余资源38.3亿t,其中岩性一地层8.5亿t; 柴达木盆地剩余资源1O亿t。其中岩性一地层4亿t; 四川盆地剩余资源2.9亿t,其中岩性一地层196亿t。由此可见,中国陆上主要盆地都具有开展岩性一地层油气藏勘探的资源基础。剩余资源量丰富,岩性一地层油气藏勘探前景广阔。从目前的勘探成果来看,以岩性一地层油气藏为主的非构造油气藏勘探取得了丰硕的成果。在这些阶段的油气勘探过程中。各个盆地积累了大量的地质、地震、钻井、测井、录井、测试和化验资料。一定程度的资料积累是岩性一地层油气藏勘探的基础,从各个盆地的资料积累来看,中国陆上主要含油气盆地均具有开展岩性一地层油气藏勘探所需的资料基础。

  (3)勘探思路

  随着油气藏勘探逐步开展,含油气盆地在各个勘探阶段所面临勘探对象的转变,即通过油气藏勘探所采用的勘探思路和技术方法也逐步发生变化,包括:① 找油思路的转变主要表现在由构造向岩性转变、由正向构造带向负向构造带转变、由构造高部位向构造带翼部转变、由环洼向洼槽转变、由单一类型向多种类型油气藏转变;②研究方法的转变由构造油藏勘探的核心工作"精细构造解释。落实圈闭高点"到岩性油藏勘探的核心工作"精细沉积储层解释,落实砂体空间展布形态"的转变,构造研究找背景,沉积研究找砂体,构造背景与沉积砂体综合研究预测隐蔽油气藏有利成藏区带;③研究手段的转变由传统石油地质评价手段转变为应用含油气系统、层序地层等现代理论,结合地震信息多参数综合评价方法,加深研究,创新认识,提高综合研究水平,达到对勘探目标多方位、多方法、多技术的全面综合评价与分析;④组织形式的转变由过去构造解释、沉积储层、新技术应用、圈闭评价分头研究转变为组成多学科多专业项目组。实现地质与物探研究的有机结合,资料处理、解释、分析与评价一体化,优势互补,联合攻关,解决关键问题。上述勘探思路、研究方法、研究手段和组织形式的转变为岩性油气藏勘探的突破提供了重要保障。同时先进技术的应用为岩性一地层油气藏勘探取得重大突破提供了良好支持。良好的技术支持和技术储备是当前和今后开展岩性一地层油气藏勘探的关键。总体来看。中国陆上主要含油气盆地具备开展岩性一地层油气藏勘探的地质背景,拥有丰富的剩余资源量保证,前期进行了良好的资料积累,同时也具有良好的勘探技术支持。从勘探历程来看,中国陆上的主要含油气盆地目前已经进入岩性一地层油气藏勘探的阶段。各盆地具有良好的岩性一地层油气藏勘探前景。

  2.岩性油气藏勘探技术孔

  2.1沉积微相和层序地层分析是进行岩性油气藏勘探的基础

  沉积微相和层序地层的横向变化和纵向演化分析是进行岩性油气藏勘探的基础,这一基础从宏观上确定了有利于岩性圈闭发育的平面位置和纵向层位。
  2.1.1盆地进入岩性油气藏勘探阶段,对于沉积相的研究必须达到小时窗沉积微相的精度

  在构造油气藏勘探阶段,对于一个构造带或者构造圈闭的评价只要达到沉积亚相的研究程度就可以满足油气勘探前景评价的需要。但由于岩性油气藏形成地质背景的特殊性,沉积相的研究至少必须达到小时窗沉积微相的研究精度。以三角洲为例来说。在构造勘探阶段,研究程度达到能够系统区分三角洲平原、三角洲前缘和前三角洲就可以满足圈闭评价的要求。但对于岩性油气藏来说,它们在同一个沉积亚相中的赋存状态存在很大的差异,往往是三角洲的一个亚相类型中存在多个孤立的岩性油气藏,或者是同一亚相的不同位置油气赋存与否存在很大差异。此外,一个研究区某一时期沉积相、沉积亚相的发育往往具有继承性而沉积微相继承性差。对于勘探程度较高的盆地来说,在常规沉积微相分析方法的基础上。结合录井相、测井相和地震相分析是目前沉积微相分析的主要方法和手段。常规沉积微相分析主要包括岩性组合分析、岩芯沉积特征分析、重矿物纵横向平面展布特征分析、古水流分析等。在目前阶段,以常规沉积微相分析技术为依托,系统结合录井相、测井相和地震相的沉积微相分析方法已经得到广泛的应用,同时大量的地震信息也为沉积微相研究提供了良好的佐证。如储层预测提供的砂体平面展布、众多地震属性的分析结果等。从纵向研究精度来看。在构造勘探阶段往往以地层组为沉积相、沉积亚相分析单元,但由于岩性油气藏往往与砂组关系更为密切,所以开展以砂组或单砂层为单元的沉积微相分析应是岩性油气藏勘探的最大地层单元。从具体沉积微相平面成图技术来看,对于同一个沉积微相研究地层单元(如砂组或单砂层)来说。以井点常规沉积微相分析、录井相和测井相分析为起点确定沉积微相类型,借助地震相、储层预测、地震属性分析等研究结果进行平面外推。确定平面上的沉积微相界限。在平面成图时应该以选择与油气藏关系密切的沉积微相为优势沉积微相,应表明不同沉积微相在纵向上的百分比变化。然后通过研究区已知油气藏所属的沉积微相类型分析,确定有利于岩性油气藏发育的沉积微相类型,同时结合沉积微相的纵向演化和平面分布变迁模式,综合确定有利于岩性圈闭或油气藏发育的平面位置和纵向层位。

  2.1.2建立高分辨率的盆地地层格架和精细的沉积体系分布,是寻找岩性圈闭的前提

  以层序地层学为代表的综合研究方法是目前区域勘探和寻找岩性圈闭的重要勘探方法和技术。高分辨层序地层学理论的核心是在基准面旋回变化过程中,由于可容纳空间与沉积物补给通量比值(A/S)的变化。相同沉积体系域或相中发生沉积物的体积分配作用,导致沉积物的保存程度、地层堆积样式、相序、相类型及岩石结构发生变化。这些变化是其在基准面旋回中所处的位置和可容纳空间的函数。基准面旋回是时间地层单元的二元划分,因而该理论与技术应用的关键是如何在地层记录中识别代表多级次基准面旋回的地层旋回,并进行高分辨率的等时地层对比。基准面旋回的识别与对比技术是根据基准面旋回和可容纳空间变化原理,地层的旋回性是基准面相对于地表位置的变化产生的沉积作用、侵蚀作用、沉积物路过形成的非沉积作用和沉积不补偿造成的饥饿性乃至非沉积作用随时间发生空间迁移的地层响应;而地层记录中不同级次的地层旋回,反映了相应级次的基准面旋回,在每一级次的地层旋回内必然存在着能反映相应级次基准面旋回所经历时间的"痕迹"。如何据一维钻井或露头剖面上的这些"痕迹"识别基准面旋回,是高分辨率层序划分与对比的基础。

  2.1.2.1基准面旋回的识别

  用来识别基准面旋回的沉积与地层特征可以概括为:① 单一相物理性质的垂向变化;②相序与相组合变化;③旋回叠加样式的改变;④地层几何形态与接触关系。这些特征均反映着可容纳空间和沉积物补给通量比值(A/S)的变化。

  (1)岩性剖面上的识别标志:① 地层剖面中的冲刷现象及其上覆的滞留沉积物;②作为层序界面的滨岸上超的向下迁移;③岩相类型或相组合在垂向剖面上转换的位置;④砂岩、泥岩厚度的旋回性变化等。

  (2)测井曲线识别标志:利用取芯井段建立短期旋回及界面的测井响应模型,用以指导区域非取芯井测井曲线的旋回划分。测井曲线对于较长期基准面旋回叠加样式的分析确定尤为有效。向湖(海)盆方向推进的叠加样式(进积)形成于较长期基准面下降期。此时A/S小于1,即沉积物供给速率大于可容纳空间增加速率,岩石学方面的性质与下伏旋回相比具可容纳空间减小的特征;向陆推进的叠加样式(退积)形成于较长期基准面旋回的上升时期,此时A/S大于1,即可容纳空间增加速率大于沉积物供给速率,上覆短期旋回的性质与相邻下伏旋回相比,在沉积学、岩石学方面表现出可容纳空间增大的特征;短期旋回加积叠加样式,则出现在较长期基准面旋回上升到下降的转换时期,此时A/S=l,相邻短期旋回形成时可容纳空间变化不大。

  (3)地震剖面上的识别标志:地震反射界面基本是等时的或平行于地层内的时间面,因而可以运用地震反射剖面进行基准面旋回的分析,但受地震信息分辨率的限制,地震反射剖面通常只能用来识别长期基准面旋回。用于识别旋回界面的主要地震标志有:① 区域分布的不整合或反映地层不协调关系的地震反射终止类型,即常规的地震地层分析标志;②与中期或长期基准面旋回上升到下降转换位置(最大可容纳空间)相对应的高振幅连续反射界面或一组反射;③与测井曲线和岩芯观察到的区域相变可对比的地震反射特征(振幅、连续性、频率、地震相等)在区域上发生重大变化;④与测井曲线和岩芯中可观察到的地层叠加样式可对比的地震反射几何形态的变化(例如由高振幅、水平反射到低振幅S形反射)。
  2.12.2地层旋回等时对比技术

  高分辨率地层对比是同一时代地层与界面的对比,不是旋回幅度和岩石类型的对比。在成因层序的对比中,基准面旋回的转换点,即基准面由下降到上升或由上升到下降的转变位置,可作为时间地层对比的优选位置。因为转换点为可容纳空间增加到最大值或减少到最小值的单向变化的极限位置,即基准面旋回的二分时间单元的划分界线。转换点在地层记录中某些位置表现为地层不连续面,某些位置则表现为连续的岩石序列。岩石与界面出现的位置和比例,是可容纳空间和沉积物供给的函数。时间一空间图解是对地层剖面进行时间一空间反演的最有效的方法,其有助于对地质过程(时间十空间)地层响应(岩石十界面)的理解并检验层序对比的可靠性。

  2.12.3高分辨率层序地层学与成油体系的关系

  高分辨率层序地层学与成油体系的关系主要表现在如下方面:① 沉积微相研究可对源岩的展布特征与运移通道作出较准确的判断;②由砂层对比而导出的砂层连通性分析,可对储集层的储集物性与储层展布特征进行预测;③精细速度分析可对地层序列中异常压力的分布形态与封存箱的发育情况作出判断,有助于圈闭评价与封堵条件研究;④高频层序或准层序的划分与对比,可对较小尺度上的生储盖组合分析提供非常有用的资料,由此可推断油气成藏机理一成藏动力学,最终导出高分辨率成油体系单元的确定。

  2.12.4利用测井方法识别地层层序

  定义每一成因地层层序,就是识别成因地层层序的边界,也就是识别最大洪水面和与其对比的地层界面。根据前人的研究,发现最大洪水面在测井曲线上主要有以下特征:高自然伽玛为富含铀、磷、海绿石的页岩;低自然电位、高电阻、高密度、高声速层,常呈尖峰状是薄层钙质泥页岩或灰岩的反映 ;低自然电位、低电阻标志层代表比较纯的海、湖相泥岩的产物,其地层位置处于向上变细的测井响应到向上变粗的测井响应的转折点上,反映相对水平面上升达到最大水进期后转为下降的趋势。测井曲线具有区域上的可对比性。由于现阶段陆上地震资料的频率分布范围在10~8OHz之间,其主频多在30~5OHz之间。缺少高频成分,分辨率较低,用地震资料不能检测小规模的旋回。因此,要划分小规模的旋回(即高频层序划分)只能最大限度地应用地质露头、钻井和测井等资料。而在这些资料中,测井资料以其数量多、连续性好及其本身的量化特点得以广泛应用,成为小规模旋回划分的主要资料来源。

  2.12.5测井资料的深度域频谱分析用于层序地层学的高频层序划分

  测井资料的深度域频谱分析是指在傅里叶变换的基础上研究测井资料的频谱信息特征及其与高频层序的关系,以用于层序地层学研究中的高频层序划分。由于时间域与深度域的振动信号序列具有同样的形式。所不同的是,在深度域进行频谱分析,其频率值只具有相对概念,而不具有绝对概念。沉积旋回基本模型的建立并外推与其它测井曲线进行相比,自然伽玛曲线可敏感反映泥质含量变化。因此采用自然伽玛曲线进行以高频层序划分为目的的频谱分析非常有效。正旋回模型为一个正韵律沉积,从浅到深泥质含量逐渐减少,砂岩含量逐渐增多,反映在自然伽玛值上从浅到探逐渐变小,所代表的沉积旋回是海进体系域(TST);反旋回模型为一反韵律沉积,从浅到深泥质含量逐渐增多,砂岩含量逐渐减少,反映在自然伽玛值上是从浅到深逐渐减小,所代表的沉积旋回为高水位体系域(HST)。值得指出的是,由于这两个模型来自实际资料,在大的变化趋势上仍包含着多个小规模的变化。高频旋回在层序界面上比较模糊,或在地震剖面上不整合特征不够明显等,因此高频层序的划分主要依靠测井及岩心资料来进行层序界面的识别。比如,从砂岩到泥岩的沉积旋回反映了一个水体从浅逐渐变深的过程,对应于一次溯泛事件到下一次湖泛事件之间的沉积组合。这种特征在对应的地震剖面上受分辨率的限制使层序界面的特征不明显,并且在地震道的时频分析图上亦不能分辨出与之对应的旋回特征。但从对测井曲线进行深度域频谱分析所得到的频率扫描和滑动窗频谱分析上可明显观察到高频旋回变化的存在并能对高频层序界面进行准确标定。深度域频率扫描是在时间域频谱分析(时颇分析)基础上发展而来的,主要是用来准确划分层序界线,识别层序(沉积旋回)类型。从理论上来说,只要自然伽玛曲线准确,用深度域频率扫描进行层序划分也是准确的;针对不同规模的层序分析和详细程度,可调整滤波器的基本频率范围和步长。测井曲线的深度域频谱分析方法是建立在傅里叶变换基础上的一种检测沉积旋回及其沉积特征的有效手段,它们的应用使沉积旋回类型的判定和划分从定性达到定量和半定量的水平,甚至可以通过软件实现沉积层序的自动划分;同时,将测井资料的深度域频谱分析方法用于层序地层学研究大大提高了小规模旋回的识别精度。
  2.12.6用伽玛能谱进行高分辨率地层层序划分

  根据Davies等在爱尔兰的研究,使用伽玛能谱识别层序地层关键界面和体系域,可以保证更大的精度和把握。其方法为:① 最大洪泛面可通过它们的相关的铀峰(大于6百万。)和低仕/钾值(小于2.5)加以鉴别;②剥蚀不整合和下切谷充填有低伽玛总数和高而易变的仕/钾值(大于6)特征;③河道间的层序边缘可以便用低钾率(小于0。4挑)和异常高的钍/钾值(大于17)的能谱特征加以鉴别。

  2.2以层序为边界的等时地层格架控制下的地震信息多参数综合评价方法是岩性一地层圈闭识别、优选与评价的主要手段

  地震信息多参数综合评价方法是指从不同的地震参数角度对同一个地质目标进行多角度、多方位分析评价的方法。]。其中包括的关键技术主要有:

  (1)地震相分析技术:地震相分析是指对一定时窗内的地震波形进行分类的处理技术。目前主要包括3种地震相分类技术:单纯的地震波形地震相分类(简单的地震相分类,缺乏地质含义);测井标定下的地震相分类(测井标定赋予每类地震相地质含义);多属性叠合地震相分类(验证所赋予的地质含义)。这种技术是一个逐步深入细化的分类过程,使每一种类的地震相含义通过测井标定和属性含义的分析逐步明确。同时。通过与已知油气层所属地震相类型的对比,可以优选有利地震相类型,快速逼近有利勘探目标。以层序为边界、等时地层格架控制下的小时窗地震相分类和分频地震相分析是今后地震相分类发展的趋势。

  (2)常规储层预测和非常规储层预测技术:常规储层预测技术目前发展已经比较成熟,加强非常规储层预测技术的应用是目前和今后储层预测的发展趋势。非常规储层预测主要包括:地震振幅与储层厚度的关系研究进行储层厚度预测;频谱分解技术、波形分类技术、地震相干技术、波形分析技术等预测储层分布范围;道积分、子波反摺积等综合预测砂体分布范围等。为储层评价提供依据。

  (3)地震属性分析技术:地震属性分析一方面可以验证储层预测的可靠性,另一方面可以初步预测目标的含油气性。地震属性提取、优选、交汇相地震属性地质含义的标定是地震属性应用的关键。

  (4)含油气检测技术:通过已知含油气层敏感地震参数的选择。利用地震信息分解原理是地震资料直接进行烃类检测的有效方法。

  (5)流体势分析技术:了解岩性圈闭在流体势场中的位置,判断岩性圈闭与流体运移轨迹之间的关系,确定岩性圈闭是否处于流体运移的优势路径或者是否处于流体运移的优势指向区,以此来判断岩性圈闭接受运移流体的可能性,从定性的角度来判断岩性圈闭威藏的可能性。为岩性圈闭勘探提供辅助评价依据。

  (6)三维可视化技术:三维可视化技术可以直观了解地下地质体在空间的分布位置和范围,协助确定钻井位置和钻井轨迹。目前中国石化石油勘探开发研究院等建成了虚拟现实系统,但由于虚拟现实系统设备庞大、价格昂贵且处于固定位置。所以操作简单、价格低廉的动态可视化是近期三维可视化的发展趋势。

  由于上述技术参数的提取与分析均与地震时窗的关系密切。所以以层序为边界、在等时地层格架控制下是提取上述参数时窗设置的关键。在纯波地震资料基础上的三维自动解释是地震参数提取的原则。

  3.结论

  中国陆上主要含油气盆地具备开展岩性一地层油气藏勘探的地质背景,拥有丰富的剩余资源量保证。前一时期已进行了良好的资料积累,同时也具有良好的勘探技术支持。从勘探历程来看,中国陆上的主要含油气盆地目前已经进入岩性一地层油气藏勘探的阶段。沉积微相和层序地层的横向变化和纵向演化分析是进行岩性油气藏勘探的基础。以层序为边界,在等时地层格架控制下的地震信息多参数综合评价方法是岩性层圈闭识别、优选、描述与评价的主要手段。地震方法储集层预测和目标含油气性评价构成了岩性油气藏勘探的两项核心地球物理综合研究技术。

所谓孔隙度是指岩石中孔隙体积 (或岩石中未被固体物质充填的空间体积)与岩石总体积 的比值。

陆相层序地层与被动大陆边缘海相层序地层之间存在较大的差异.陆相盆地沉积受多种因素控制,而且不同类型盆地的主要控制因素又各不相同,造就了陆相盆地沉积类型多、相变快、横向连续性差、纵向上层序厚度变化大,频繁的湖侵湖退使湖盆沉积垂向上韵律变化快;因此陆相层序地层的形成、结构和模式更为复杂,研究更为困难.在研究与实践中,中国学者根据陆相盆地的边界特征、体系域边界特征、初始湖泛面和最大湖泛面、是否有坡折带等因素,建立了符合中国盆地沉积实际的坳陷型盆地和断陷型盆地层序地层格架和模式.控制陆相地层层序发育的因素主要是湖平面的变化、构造、气候、基准面的变化和物源的供给,特别是构造和气候显得十分重要,它们直接控制了湖平面的变化.陆相地层层序研究的方法体系主要包括露头层序研究方法、实验观测和分析方法、测井层序地层分析、地震层序地层分析和层序地层的数值模拟方法.在油气勘探中的区带勘探阶段、目标勘探阶段和开发阶段,层序地层学都能发挥不可替代的作用.
孔隙度是储层评价的重要参数之一.核磁共振(NMR)孔隙度只对孔隙流体有响应,在确定地层孔隙度方面具有其他测井方法无法比拟的优势.但是,在中国陆相复杂地层的应用中常常发现NMR孔隙度与地层实际孔隙度存在差异,有时差异甚至很明显,影响了NMR测井的应用效果.介绍了NMR孔隙度的理论基础,在对NMR孔隙度影响因素分析的基础上,重点考察了国内现有的NMR孔隙度测井方法对测量结果的影响,通过对大量人造岩样和不同:占性的天然岩样的实验测量,提出了适合中国陆相地层的孔隙度测井方法,改善了NMR孔隙度的测量效果.针对中国陆相地层的复杂性,建议不同地区应根据;臣体情况进行岩心分析,确定恰当的NMR测井方法,以获得比较准确的NMR孔隙度.

沉积盆地 ( 简称盆地) 是指岩石圈表面 ( 地球表面) 在三维空间内,容纳沉积物堆积和叠置的场所,其边界为各种不同性质的构造活动带和自然地理障壁。沉积盆地分析就是将沉积盆地作为研究对象,运用多学科 ( 如沉积学、地层学、构造地质学等) 的知识,采用多种方法 ( 如钻孔、露头观察和地球物理等) 对盆地的形成、沉积充填、古地理演化和地球动力学进行综合研究的过程。古地理学是研究和描述地史时期地球表面的自然地理,如海陆分布、海水深度、盐度、温度、陆地地形、气候条件、生物分布等特征及其发展历史的一个地质学的分支。古地理分析,通常是在地层和所含化石、沉积岩和沉积相研究、大地构造、区域地质研究的基础上进行的,其对于阐明地壳发展史,揭示矿产的形成环境及其分布规律具有指导意义。

图 2. 1 古地理分析内容示意

2. 1. 1 沉积分析的原则与方法

古地理分析是对地质历史时期中自然地理景观的再造,也就是再造沉积区和侵蚀区的景观。古地理分析的内容包括: 所研究区或盆地的地层等时格架的建立,精细地层的划分与对比; 确定侵蚀区的位置及母岩的性质、古地形的起伏; 确定沉积区的边界、搬运介质及水动力条件; 确定水的物理 - 化学性质等介质条件。此外,古地理分析还要确定古气候及古构造状况、确定古火山喷发的中心等 ( 图 2. 1) 。

古地理的分析不仅可以确定当时的自然地理景观,还可查明沉积矿产的生成与分布的规律性; 阐明沉积作用与大地构造之间的关系,以进一步了解地壳运动与地质发展史,作出矿产的预测; 对于特殊盆地、特殊沉积 ( 如事件沉积) 进行专门研究,恢复古地理景观。

总之,古地理分析是在综合各种地质资料的基础上,通过沉积学、古生态、古构造、地球化学等分析方法,再现当时的自然地理景观。由于这个问题涉及的范围很广,目前还不能得到全面的解决,所以在此尽可能简要地介绍一下古地理分析的有关方法。岩相古地理学发展到今天,已经与盆地分析、层序地层学等新学科密切地联系在一起,岩相古地理学研究更注重盆地演化的细节问题和资源预测的精度。

2. 1. 1. 1 现实主义原则

沉积相分析的原则包括 “现实主义” ( actualism) 原则和相共生原则 ( 又称瓦尔特相律,Walther's Law) 。现实主义原则由地质学之父莱伊尔 ( C. Lyell) 于1830 年在 《地质学原理》一书中作了详细论述。其基本含义为: 现在正在进行着的地质作用,也曾以基本相同的方式和强度在整个地质时期发生过,古代的地质事件可以用今天所观察到的现象和作用加以解释。

1905 年盖基 ( A. Geikie) 又提出了 “现在是打开过去的钥匙” ( the present is the keyto the past) 这一著名的表述。在我国常将这一原则称为 “将今论古”,或 “历史比较法”。现实主义原则作为地质科学的一种方法论和基本原则,对沉积相分析和古地理研究尤为重要。

现实主义原则不仅是研究和恢复古代沉积环境的指导理论,而且为进一步发展沉积学和古地理学指出了一条正确途径。为了能更准确地解释过去,必须加强对现代沉积环境、沉积作用及产物的研究。从某种意义上说,对现代沉积学的知识了解得越多,就越能更好地解释过去,碳酸盐沉积学新理论的提出,潮坪、风暴岩、三角洲等许多沉积相模式的建立等就是很好的证明。

需要指出的是,应用现实主义原则时必须考虑到地质历史与生物演化规律一样也是前进性发展的,各地质时期的地质作用方式和特点既有继承性,也有变化性,既有连续性又有阶段性,例如元古宙的碳酸盐潮坪中广泛发育有叠层石,而到显生宙时,同样是碳酸盐潮坪环境,由于食藻生物的出现,叠层石的分布范围和数量大为减少。所以在应用现实主义原则时,决不能把今日的现象与古代简单地完全等同看待,而必须根据多方面的事实,以发展的观点,进行历史的分析,才能得出合乎逻辑的科学解释。

2. 1. 1. 2 沉积相分析方法

探讨地层形成的自然环境,再造沉积时期古地理面貌的基本方法是沉积相分析法。沉积学及古地理学的研究方法可以分为野外和室内两个方面。首先是沉积岩岩石学和沉积相标志的研究,沉积岩分布于地壳中成为一种地质体,因此在野外对沉积岩进行研究时首先要使用地质观察的方法,即在野外研究沉积岩的物质组分、结构、构造、岩层产状、岩层间的接触关系、岩层厚度、各种成因标志和岩性组合在纵向和横向上的变化; 并收集古流向资料,从而查明沉积岩在时间上和空间上的分布和演化特点。获得这些资料最基本的方法是系统地测制地层剖面和沉积岩相剖面,并进行区域范围的地层和相剖面的分析与对比。

近年来,在沉积学研究中还引进了大量新技术和新方法,如遥感技术、钻探技术、深海钻探及采取长岩心技术、各种测井技术和地震勘探技术; 此外,航空摄影或地面摄影用的雷达测试技术以及探测水下地形的声呐测试技术已在逐渐应用。

在室内研究中,显微镜薄片法仍是研究沉积岩最基本的方法。沉积学常用的室内方法还有粒度分析、重矿物分析、不溶残渣分析、差热分析、化学分析、光谱分析等。近年来,室内研究中亦引进了不少新的测试手段,如阴极发光显微镜、稳定同位素 ( 碳、氧、硫) 分析、扫描电子显微镜、X 射线衍射、图像分析、电子探针、原子吸收光谱、红外光谱、气相色谱以及激光拉曼光谱和古地磁的研究等。同时,计算机技术已广泛应用于沉积学研究中,包括沉积过程和沉积体系的展布及储层分布的模拟和预测等。

在地下资料的应用方面,主要是利用钻井过程中测得的地下各地层的物性资料 ( 测井曲线) 进行岩性判别和测井相分析,以及利用地震测量资料,通过各沉积体和沉积界面的反射曲线研究而进行沉积相分析,即地震相分析。地下相分析是研究油田地下地层和沉积相以圈定油气储集层的主要手段。

这些新技术、新方法的引进,是促进沉积学发展的重要原因之一,使沉积学在宏观领域和微观领域的研究深度、广度和成效大为提高,更使得对于沉积岩的客观规律的认识达到了一个新的水平。应该强调,必须将野外露头 ( 或岩心) 观察和室内研究密切结合起来。室内研究是野外研究的继续,野外研究是室内研究的基础。此外,在对沉积岩进行研究时,必须要注意沉积作用和成因以及其他地质作用,特别是与构造环境的关系。要将其他有关地质学科的资料和知识恰当地运用到沉积学及古地理学的研究中,才能获得有关沉积岩成因的全面的认识。

2. 1. 2 岩相古地理分析基本原理

沉积相分析和岩相古地理各种沉积条件的分析必须遵循一些法则,主要有相序递变法则、沉降补偿原理和地层旋回等时对比法则等。

2. 1. 2. 1 相序递变法则

相序递变规律或相变法则是指沉积相在时间上和空间上发展变化的有序性,称为相序递变。很早瓦尔特 ( Walther,1894) 就指出: “只有在横向上成因相近且紧密相邻而发育着的相,才能在垂向上依次叠覆出现而没有间隔”。这一规律通称为相序递变规律或相序递变法则,是相序分析中应遵守的基本法则。

相序递变主要有两种基本类型,一类是由于海平面上升 ( 或海进) 所形成的退积型相层序,相剖面自下而上由陆相—海陆过渡相—海相叠覆而成; 另一类是由于海平面下降( 或海退) 所形成的进积型相层序,相剖面自下而上由海相—海陆过渡相—陆相叠覆而成。如果是由海平面上升、再次下降连续叠覆形成的一个完整旋回,即为连续沉积的相层序或称为完整相层序。依据岩性、岩相变化的级次,也可划分出次一级相层序。也就是说,在早期,我国中新生代陆相含油气盆地分析采用岩性韵律对比法、相旋回对比法,如能运用成因层序等时对比原则,在识别出不同级次沉积 ( 地层) 旋回的基础上采用相旋回对比法,有可能建立精细区域地层 ( 砂层、或砂层组) 等时对比格架。

2. 1. 2. 2 沉降补偿原理

沉积盆地沉降和补偿可概括为下述 4 种情况:

1) 快速沉降,快速补偿。起因于盆地快速沉降,侵蚀区快速上升,为地壳活动区的特色,主要由分选差、厚度大的粗—中碎屑沉积物组成,为洪积 - 冲积相,多为陆源沉积盆地沉降中心特点。

2) 快速沉降,缓慢补偿。即补偿速度小于沉降速度,物源区母岩风化较彻底,多以黏土及化学溶解物质沉积为主,显厚度较小的深水—较深水相沉积,在陆源盆地中具有沉积中心 ( 或生烃中心) 的特点。

3) 缓慢沉降,快速补偿。由于补偿速度远大于沉降速度,水盆面积缩小,以淤积 -冲积沉积为主,直至盆地填满消亡,显现岩性、岩相连续,但剥蚀、冲刷现象明显。

4) 缓慢沉降,缓慢补偿。由于沉降与补偿均缓慢,代表稳定构造区特点,形成成熟度高的碎屑沉积物 ( 如石英砂岩) ,常为浅海陆棚区所特有。

沉积盆地沉降和补偿原理对于含油气沉积盆地岩相古地理研究的相分析具有重要意义。因此,在剖面相分析中,除应注意在一定环境里由于沉降与补偿变异所造成的层序、厚度和接触关系等变化外,还应注意在环境和水深等条件相对不变时,由于瞬间事件作用所引起的各种变化。剖面相分析中应注意下述几个基本原则。

( 1) 定时问题

剖面对比相分析中主要解决同一时期、不同地区的沉积相的变化,选择等时对比界面就是一个首要问题。

区域剖面相分析中,较好地利用标准化石定时的例子很多。近 20 年来,应用碳酸盐岩中的超微体化石、浮游有孔虫的鉴定,并结合古地磁的测试,较好地解决了海相沉积盆地古近 - 新近纪、白垩纪和侏罗纪准确定时问题。海相碳酸盐岩中的超微体生物从侏罗纪时出现,白垩纪大量繁殖,古近 - 新近纪最盛。故应用此法定时还受到时间及相类型的限制。

我国东部中、新生代陆源碎屑沉积为主的地区,剖面对比相分析中,利用标准生物化石的 “科”、“属”可以划分系、统, “种”的变化可以用来划分组、段。但生物演化常不是截然突变的,甚至有一些 “哑层”采不到化石,因此常不易准确地划分等时界面,更多的是结合岩性组合特征、沉积层序和接触关系等标志来加以确定。

( 2) 穿时问题

传统的群、组、段岩石地层单位时常存在 “时侵”或 “穿时”问题,在以陆源碎屑沉积为主的地层单元尤为常见。

传统油区地层划分和对比主要注重相似或相同岩性的等时性,而忽视了等时界面和岩性界面的不一致性,即穿时现象。

新地层学原理———垂向加积作用和侧向加积作用是在近代沉积学、地震地层学的发展基础上而建立起来的。沉积盆地中沉积物的沉积作用除了由于重力作用产生垂向加积外,尚有由于环流或湖面收缩 - 扩张所产生的侧向和前积作用。例如曲流河体系中由凸岸( 加积岸) 向凹岸 ( 侵蚀岸) 的侧向加积作用; 在沉积盆地中由于湖面收缩河流三角洲或扇三角洲向盆地内方向推进的前积作用等。由此建立了不少新地层学模型和相模式,有助于建立段和亚段,乃至砂层组的等时地层格架。

2. 1. 2. 3 地层旋回等时对比法则

近几年兴起的高分辨率层序地层学中提出的地层旋回等时对比概念有其可取之处,特别是在油区大比例尺岩相古地理工业制图中应予以考虑。

高分辨率层序地层学 ( Cross,1994) 是应用 Walther 相序定律,结合 Wisdom 的基准面取代定律并采用岩石地层横剖面及相应的时空范围进行编制,有可能解决陆相含油气盆地勘探和开发中砂层和砂层组的精细对比问题。其基本指导思想是应用沉积动力学观点,分析沉积盆地 ( 区) 沉积物的堆积样式、保存程度、相序递变特征及不同级次相类型的组合和纵横向变化,这一切变化受控于基准面 ( 是一个地球物理面,为上、下振动并横向摆动的抽象等势面) 的升降变化,有效可容空间向盆地或向陆地发生迁移,使沉积物( 岩) 各种性质发生变化构成了时间和空间的函数。因此,以此为出发点来解释各种层序的岩性岩相变化及其沉积学特征,有可能充实和完善单纯用相序递变法则和相旋回对比法而无法解决的高精度等时地层格架问题。

地层旋回的等时对比基本原理是: 伴随基准面的升降变化和可容纳空间的增大与减小,地层记录可以由完整的地层旋回组成,也可以仅由非对称的半旋回和代表侵蚀作用与非沉积作用的界面构成。基准面旋回的转换点可作为时间地层对比的优选位置。转换点在地层记录中的某些地理位置表现为地层不连续面,某些位置则表现为连续的岩石序列。岩石与界面出现的位置和比例是可容纳空间和沉积物供给的函数。

高分辨率层序地层对比的核心内容是同时代地层与界面的对比,不能简单地泥对泥、砂对砂,或者简单地进行旋回对比,而要根据在一个旋回中不同地理位置上的地层发育特点进行对比。

对比的总原则是:

1) 先进行较大基准面旋回的对比,然后进行较小旋回的对比。

2) 一个完整基准面旋回、向上变细的半旋回及向上变粗的半旋回间可以互相对比,也可以分别与没有沉积的一个面进行对比,即所谓的岩石对比岩石、岩石对比界面或面面相对。

3) 在短期基准面旋回的对比过程中,中期基准面由上升到下降的转换点是优选位置中要重点考虑的对比界面,以此转换点为起点,依次向上或向下作小层对比,其结果会更趋合理。特别是在区域范围的地层对比中,掌握这一原则十分必要,因为此转换点是中期基准面向其幅度最大值单向移动的临界点,在区域内表现为连续的岩石序列,即同一时间域内的不同地理位置均产生了沉积响应。

2. 1. 3 盆地地层格架的建立

进行沉积盆地古地理和盆地的整体分析,不论是利用露头,还是钻孔、测井与地震资料,首要问题是进行地层划分和对比,建立研究区的地层格架,这是沉积盆地分析和重建古地理格局的基础。

2. 1. 3. 1 地层的沉积作用

沉积作用分为物理的、化学的、生物的 3 种。从地层的形成方式来看,沉积作用可以归结为垂向加积作用和侧向加积作用两种最基本的方式。

( 1) 垂向加积作用

垂向加积是指沉积物在地球重力场作用下从沉积介质中自上而下的堆积过程,该过程是以沉积物 “雨”降方式堆积沉积物的。因此,沉积层是垂向上加积的,这种沉积方式即形成所谓 “千层糕式”的地层形式,地层的叠覆原理就是在这种理论的基础上建立起来的。大洋环境、深海、大型湖盆、封闭海盆、潟湖和爆发型火山沉积区是垂向加积作用的主要场所; 浊积岩、风暴岩、洪泛岩等序列中的背景沉积、宇宙尘堆积、风成黄土等都是垂向加积的标志性地层记录。垂向加积作用所形成的地层具有以下特征: ①未经构造变动和未发生倒转的地层序列,在任何时空尺度上总是上新下老; ②连续延伸的岩层界面必然是等时面,主要由沉积速率、气候条件、物源类型、物理条件、化学条件等变化,导致沉积物成分、结构、构造和颜色等特征的变化,故岩石地层单位穿时普遍性原理不适用于以垂向加积作用为主的地层; ③地层的相变不服从瓦尔特相律,而服从其具体沉积作用的特有规律或具随机性,例如与界线黏土层相关的地层记录。

图 2. 2 曲流河侧向迁移形成的侧向加积 ( A) 和障壁砂坝向海推进形成的前积 ( B)( A 据 Davis,1983; B 据 H. A. Bernard 等,1962,转引自杜远生等,1994)

( 2) 侧向加积作用

侧向加积作用是指沉积物在搬运营力作用下,沿搬运方向的堆积推移过程,该过程所形成的原始沉积层是斜列的,即等时面是倾斜的,常见的如曲流河道迁移过程中边滩向凸岸方向的积 ( 图 2. 2A) 、三角洲前缘向海方向的加积、砂坝向海推进过程中向海方向的加积 ( 图 2. 2B) 以及滨岸沉积在海平面上升时形成的向岸方向的加积,生物建隆在其筑积速度和海平面上升幅度均衡时以垂向加积为主,而当海平面上升幅度小于筑积速度时就会出现侧向加积 ( 图 2. 3) 。由侧向加积作用形成的地层记录具有如下特征: ①未经构造变动和未发生倒转的地层序列其沉积层是原始倾斜的,即其等时面是原始倾斜的; ②在广大范围内连续延伸的相同属性岩层或岩性界面,其穿时性是绝对的,等时性是相对的;③地层的相变符合瓦尔特相律。

图 2. 3 生物建隆 ( 礁) 的垂向加积 ( A) 和侧向加积 ( B、C) 示意( 据 Langman,1981,转引自杜远生等,1994)

( 3) 海进、海退与地层的形成

海进、海退是地层形成的重要动力过程,不同地史时期,不同环境条件形成了各具特色的记录 ( 图 2. 4) ,其重要特征是若地层层序连续,则相序必然连续,相的时空结构服从瓦尔特相律,但其相同属性的岩相界面在斜交和垂直海岸线方向上必定是穿时的,如我国华北地台南部河南、河北一带早古生代的三山子组白云岩就是典型的穿时岩石地层单位。

2. 1. 3. 2 地层对比与地层格架的建立

地层对比是确定不同剖面上地层单位的地层特征和地层层位的相当。由于地层有不同的属性,划分地层单位的依据不同,故具有不同的地层对比标准,如生物、岩性、年代、磁性、地震反射特征等。层序地层学为沉积盆地沉积地层的对比和建立地层格架及进行盆地沉积充填分析提供了新的手段,利用层序形成的某一阶段的等时界线,作 “瞬时”古地理图,也为古地理研究提供了新的前景。

所谓地层格架是指区域性岩石地层的时空有序排列形式,它可以用一定的几何图形表示。因为时间和空间是两种不同的物理量,所以,地层格架又可分为空间格架和时间格架两类。地层的空间格架又叫作岩石地层格架,或地层的沉积格架; 时间格架也可叫作年代地层格架。两类格架中,岩石地层格架为基础,它是客观存在的,是可以根据岩石地层序列的结构和空间排列特征、几何形态、几何关系确定的描述性格架,是沉积盆地分析和沉积地层及沉积层控矿产分布规律预测的基础; 年代地层格架是解释性的格架 ( 图 2. 5) 。

图 2. 4 海进超覆 ( A) 及海退退覆 ( B) 与地层相变关系( 据王鸿祯等,1980)

建立区域地层格架,必须了解沉积地层序列内基本不整合界线单位的发育特征,包括其划分、时空分布情况、垂向叠覆及其内部岩石地层的结构、形态、相互关系、侧向堆积规律等。地质填图是主要的地面调查方法,此外还应尽可能地综合使用层序地层学、岩石地层学、年代地层学、生物地层学、磁性地层学、沉积学和遥感地质方法。

( 1) 区域不整合面的识别与追索

1) 不整合面上、下岩层的几何关系: 最重要的是向陆方向上覆岩层对不整合面的区域性上超 ( 超覆) 、陆架 ( 台地) 前缘或盆地边缘的倾斜时沉积岩层对陆架 ( 台地) 边缘的上超、对上覆不整合的顶超以及上覆地层对不整合的下超等。

2) 古风化壳标志: 古风化壳以钙质风化壳最为常见,其次是铁质风化壳、铝质风化壳和硅质风化壳等。古风化壳都属于古土壤的范畴,是在土壤剖面的 C 层 ( 风化的基岩层) 与 B 层 ( 淋积和残积层) 中发育形成的,其上的 A 层 ( 有机矿物层) 及 O 层 ( 富有机质层) 一般未保存下来。

3) 岩性岩相标志: 该标志为岩性和垂直层序的突变或规律性变化、底砾岩的出现。底砾岩分布在海相层序中陆相沉积的顶或底,含陆棚或台地内部沉积大角砾的块体流沉积之顶或底、大量蒸发岩之底或顶,可以指示不整合的存在。

4) 不整合的剥蚀标志: 主要是层序地层学中Ⅰ型不整合面的起伏、深切河谷、较大型 ( 高 0. 1 ~1m) 的圆滑喀斯特溶沟等。但是经过较长期暴露或波浪冲刷的不整合面则无剥蚀标志保留。

5) 地层缺失和古生物带的缺失: 一般来说不整合面的识别标志在侧向上变化很大,因此,最好通过填图查明其变化情况,但是有的不整合物理特征不明显,那就只能靠区域地层对比查明是否有重要的地层和生物带缺失,来确定有无不整合。

图2.5贵阳地区三叠纪地层格架(据魏家庸等,1991)

(2)凝缩段的追索与识别

凝缩段(饥饿段)指相对较薄、沉积速率极低的一段地层。该地层是在相对海平面最高时期的沉积,饥饿段的主要识别标志有:强烈生物扰动的毫米级—厘米级纹层—薄层泥灰岩或页岩,浮游生物化石丰富的瘤状泥质灰岩,富有机质或深色的黏土岩,某些斑脱岩,磷、锰、菱铁矿等结核或自生海绿石相对富集层,多元素的地球化学异常富集层等。物理标志有:硬底及海底间断面的频繁出现,高水位沉积层向饥饿段的下超现象等。凝缩段主要分布于盆地内至陆棚或台地前缘部位,向陆棚或台地内部追索,其延伸范围可大可小,其特征也会发生变化。但不管怎样变化,它与上、下岩层相比其层理明显较薄,其沉积速率总是较低的。凝缩段由于岩性特殊,一般可作为非正式或正式岩石地层单位填图。

( 3) 特殊形态岩石单位的填图

特殊形态的岩石单位一般分布范围有限,主要是构成低位体系域的重力流沉积 ( 如灰岩角砾岩楔或岩舌、厚层砂岩岩楔) ,以及高位体系域的礁、滩等。

( 4) 遥感图像解译

遥感图像的优点是能够清楚地展现大范围地层实体的形态与几何关系。遥感图像解译的重点是特殊形态的岩石单位、不整合与沉积岩层的层理特征,以及下超、上超、顶超等关系。

( 5) 沉积序列垂向变化研究

在陆棚或台地边缘,地层格架的几何特征、低位或边缘楔和饥饿段等比较清楚,而在陆棚或台地内部情况则相反,主要是海侵体系域和高位体系域的沉积。这时除了仔细查找不整合面外,还要靠研究沉积层序的垂向变化,将海侵体系域与高位体系域分开,来建立地层格架。

海侵体系域和高位体系域的地层结构正好相反,前者为退积结构,后者为进积结构。这两种结构在沉积层序的垂向变化上均有明显的反映。因此,根据其垂向变化规律可以划分高级的退积 ( 海侵) 和进积 ( 海退) 旋回。退积与进积的旋回界面相当于饥饿段中部的最大海泛面,进积与退积的旋回界面相当于不整合面。

( 6) 地层时代研究

综合利用生物地层学、年代地层学、磁性地层学和地质年代学方法,确定各地层单元的时代归属,同时还必须与详细研究岩石地层的几何关系相结合,以便建立地区性年代地层格架。

2. 1. 4 沉积微相研究

2. 1. 4. 1 沉积微相含义

沉积微相是研究可识别、划分的,并具有一定应用价值,如判断相对最小一级沉积单元的砂体成因。目的是预测其属性、砂体规模及展布,为油气开发中研究油水运动特点和剩余油分布提供地质依据。

2. 1. 4. 2 研究的基本方法

( 1) 确定研究工区所处的沉积部位

在区域沉积相带划分基础上,首先确定研究工区所处的沉积部位、所属的沉积相类型,为微相研究提供宏观控制。

( 2) 建立沉积相的标准相模式

标准相模式是研究沉积微相的重要依据,通过标准相模式可以了解微相类型、分布及沉积特点,以指导微相划分,如湖泊盆地的微相 ( 表 2. 1) 。

( 3) 确定沉积微相类型

以岩心为基础,综合录井资料作参照,以电测曲线形态为基础,综合判断微相类型。

1) 基本原则: ①以沉积相的标准相模式,指导微相划分; ②小层地层单元是确定微相类型的基本单元。

2) 主要方法: ①分析小层单元岩性组合、单层厚度、砂岩岩性、泥岩颜色等有关相划分的单因素指标,进行逐井、逐层定相; ②优选标准的微相岩性剖面→岩电性的相关性分析→建立微相电子图版,以便用大量的电测曲线资料,直接划分微相类型。

表 2. 1 陆相湖盆主要沉积相、亚相与微相




盆地沉积相与地层格架分析方法视频

相关评论:
  • 18085965872成因地层层序的基本理论
    喻裘柴答:成因地层分析是Galloway等人提出的沉积盆地充填分析方法,其主要目的是研究盆地的成因地层格架和各级成因地层单位的内、外沉积构成。无论是沉积盆地还是组成盆地内涵的各种沉积体系,都具有多层次沉积构成的特点,也就是说,每个沉积盆地也都包含多种级别的成因地层单位。Selley(1982)建议用成因地层层序(...

  • 18085965872上古生界成因地层格架与沉积特征分析
    喻裘柴答:1.石炭系梅山群成因地层格架与沉积特征 据李宝芳等(2000)的研究,华北南部地区南缘的石炭系与华北克拉通陆表海的沉积不同,不仅有下石炭统,而且还是典型的深水浊积岩和盆底扇砾岩(图3-2)。 花园墙组(C1h)下部以远端扇细碎屑浊积岩为主,向上扇面河道充填砂岩增厚,再向上为辫状三角洲和退积辫状河道充填沉积。微...

  • 18085965872层序格架下的沉积体系演化
    喻裘柴答:下面对其中的两条主干剖面分别进行分析。(1)剖面一:付深1井-兴文麒麟-习水吼滩-秀山溶溪-湖南花垣卡棚沉积相对比图(图6.2)图6.1 研究区主干剖面位置图 图6.2 研究区东西向层序格架下的沉积相展布特征 此条剖面的选取兼顾了黔中隆起北侧和雪峰山隆起西侧的小河坝组及石牛栏组的物质聚集分布规律...

  • 18085965872岩相古地理学的主要内容
    喻裘柴答:0. 2. 2 岩相古地理分析方法 着重介绍岩相与古地理分析的基本方法和技术。主要内容包括盆地沉积相与地层格架分析方法、盆地的充填和演化分析、地层厚度与砂分散体系分析、陆源 ( 物源) 区的分析、古构造分析、古流分析、古气候恢复方法、古水深与古盐度分析等。0. 2. 3 古地理重建的古生物标志 古...

  • 18085965872三级层序及地层格架
    喻裘柴答:在某种条件下,根土岩出现于高水位及低水位体系域的多个部位,仅仅凭靠岩心资料、出现根土岩就定为层序边界是欠妥的,应该结合测井和地震资料综合分析才能得出正确的结论。通常,在近盆地中心部位根土岩薄,层序边界在根土岩之下;在坡折带部位,根土岩相对较厚,层序边界大体位于根土岩中部;在近岸部位,根土层最厚,...

  • 18085965872(一)等时格架的层序对比和盆地演化
    喻裘柴答:由图3-9中看出,上扬子西缘中、晚三叠世的沉积物总体上为三个时间楔,每个时间楔都是一个等时地层格架,在地震反射剖面上以T6为界面。而在上扬子克拉通上则为4个等时格架界面的复合,包含了拉丁期以后至晚三叠世全部的时间损失量。2.等时层序格架特征与盆地演化的耦合关系 二叠—三叠纪8个等时...

  • 18085965872其他分析方法
    喻裘柴答:将层序地层作为盆地分析的手段和方法主要有以下几方面:①层序界面类型可判别盆地事件;②层序界面级别可反映事件规模;③层序级别可揭示盆地规模大小;④层序成因格架可恢复盆地成因类型;⑤层序发育空间展布可推断盆地同沉积断裂活动;⑥层序内部构型可反映盆地基底构造特征;⑦层序充填序列可揭示盆地演化过程。

  • 18085965872区域地层格架
    喻裘柴答:区域资料显示,海侵分南、北向分别漫进,但南、北两支海侵被安丘市—沂水一带的古隆起隔开。区内由北东向南西方向超覆。本区由于断层带影响坊子区幅地势较高海侵被阻隔。图1-2-7 土门群地层断面图 震旦纪中期海侵为新元古代以来的最大的一次,南、北两侧海侵在沂水县佟家庄一带汇合,沉积盆地南北贯通,...

  • 18085965872珠江口盆地沉降史定量模拟和分析
    喻裘柴答:摘要 运用Petrosys 盆地模拟系统,定量和动态地模拟了珠江口盆地三个主要坳陷的沉降过程,论述了沉降速率的变化与生储盖发育之间的关联,认为珠江口盆地构造沉降史具有幕式、多阶段变化的特征。盆地第一幕和第二幕沉降是盆地发育的主要时期,奠定了盆地的构造格架,形成了盆地主要的沉积地层和油气资源。第三幕沉降为盆地...

  • 18085965872岩性油气藏国内外研究现状
    喻裘柴答:2.1沉积微相和层序地层分析是进行岩性油气藏勘探的基础 沉积微相和层序地层的横向变化和纵向演化分析是进行岩性油气藏勘探的基础,这一基础从宏观上确定了有利于岩性圈闭发育的平面位置和纵向层位。2.1.1盆地进入岩性油气藏勘探阶段,对于沉积相的研究必须达到小时窗沉积微相的精度 在构造油气藏勘探阶段...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网