排列组合问题

来自:    更新日期:早些时候
排列组合的问题~

“选元”(从n类个不同元素中每次取出m个元素)是排列和组合两个概念的共同属性,而“排序”(是否将取出的m个元素按照一定的顺序排成一列)是排列和组合两个概念的不同属性.
你根据以上的定义可以知道,排列和组合都是从一个大范围里面取东西,区别是排列取出东西要再按顺序排列,组合取出的东西相互间没有顺序关系
举个简单的例子,
1.从20个人中选3个人,不同选发是?
这时用的是组合,因为取出3个人后,没有要求他们再按什么排列,也就是对他们的位置没有限定

2,从20个人里选3个,而后按身高由高到矮排队,有多少不同方法?
这时用排列,因为从20个人里选3个后,还要按高矮排列,这时题2比题1的不同之处,按高矮排,就说明,题目是对3个人的顺序是有限定,这时用排列

同理,按高矮排还可以改成按体重,视力,分数,等等等等

自我感觉学的时候你知道概念和会做题是两会事,因为题目中有很多技巧,光知道概念是没法做的
比如以下
一、合理分类与准确分步法

解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,作到分类标准明确,分步层次清楚,不重不漏。
例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )
A.120种 B.96种 C.78种 D.72种
选C

二、正难反易转化法
对于一些生疏问题或直接求解较为复杂或较为困难问题,从正面入手情况较多,不易解决,这时可从反面入手,将其转化为一个简单问题来处理。
例2、 马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?
分析: 关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的6个空中插入3只暗灯”的问题。

三、混合问题“先选后排”
对于排列组合混合问题,可先选出元素,再排列。
例 3、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?
因有一空盒,故必有一盒子放两球,他们是先选的,答案144

四、特殊元素“优先安排法”
对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。
例4、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A24个 B。30个 C。40个 D。60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类 选B

五、总体淘汰法
对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。
例子4可以按这个方法做

六、局部问题“整体优先法”
对于局部排列问题,可先将局部看作一个元与其余元素一同排列,然后在进行局部排列。
例5、7人站成一排照相,要求甲乙两人之间恰好隔三人的站法有多少种?
分析: 甲、乙及间隔的3人组成一个“小整体”,这3人可从其余5人中选,这是第一步要做的 答案720

七、相邻问题一“元”法
对于某几个元素要求相邻的排列问题,可将相邻的元素看作一个“元”与其他元素排列,然后在对“元”内部元素排列。
例6、 7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?
分析: 把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列答案7200种
八、不相邻问题“插空法”
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例7、在例6中, 若要求甲、乙、丙不相邻,则有多少种不同的排法?
先将4人排好,出现5个空,甲乙两人进5个空中的3个 答案1400

九。构造模型 “隔板法”
对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。

十一、分排问题“直排法”
把几个元素排成前后若干排的排列问题,若没有其它的特殊要求,可采取统一排成一排的方法来处理。
例10、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理

近几年高考选择还出现一种题,列举,他用排列组合公式算不了,可是也算排列组合中的一种,这时你只能将可能一种一种列出了

虽然放下很久了,
但是,如果我没有记错的话,
C(11,6)=C(11,5)
同理,第二问中,
C(7,3)=C(7,4)
这个应该是很基本的概念吧,,我记得是的,

呐,就这两个公式,公式来源百度。。可以搜到

这么理解把三男先绑在一起把三女也绑在一起这样,就有2种组合然后三男,有P33排列方式即:3×2×1=6种三女也是一样所以,最后答案为 2×6×6=72种

小猪储钱罐有相同的100个5角硬币,相同的80个1元硬币,从中选出8个硬币有9种方式:
8个1元硬币,1个5角7个1元,2个5角6个1元
3个5角5个1元,4个5角4个1元,5个5角3个1元
6个5角2个1元,7个5角1个1元,8个5角硬币。

第八题有7种
1个5角7个1元,1个1元7个5角。
2个五角,6个一元,6个五角2个一元。
三个五角,五个一元,五个五角,三个一元。
四个五角,四个一元

在介绍排列组合方法之前 我们先来了解一下基本的运算公式!
C5取3=(5×4×3)/(3×2×1) C6取2=(6×5)/(2×1)
通过这2个例子 看出
CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子. 以取值N的阶层作为分母
P53=5×4×3 P66=6×5×4×3×2×1
通过这2个例子
PMN=从M开始与自身连续N个自然数的降序乘积 当N=M时 即M的阶层
排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.
解答排列、组合问题的思维模式有二:
其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;
其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.
分 类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.
分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.
两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.
在解决排列与组合的应用题时应注意以下几点:
1.有限制条件的排列问题常见命题形式:
“在”与“不在”
“邻”与“不邻”
在解决问题时要掌握基本的解题思想和方法:
⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.
⑵“不邻”问题在解题时最常用的是“插空排列法”.
⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.
⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.
2.有限制条件的组合问题,常见的命题形式:
“含”与“不含”
“至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”.
3. 在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.
提供10道习题供大家练习
1、三边长均为整数,且最大边长为11的三角形的个数为( C )
(A)25个 (B)26个 (C)36个 (D)37个
------------------------------------------------------
【解析】
根据三角形边的原理 两边之和大于第三边,两边之差小于第三边
可见最大的边是11
则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候
因此我们以一条边的长度开始分析
如果为11,则另外一个边的长度是11,10,9,8,7,6,.1
如果为10 则另外一个边的长度是10,9,8.2,
(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)
如果为9 则另外一个边的长度是 9,8,7,.3
(理由同上 ,可见规律出现)
规律出现 总数是11+9+7+.1=(1+11)×6÷2=36
2、
(1)将4封信投入3个邮筒,有多少种不同的投法?
------------------------------------------------------------
【解析】 每封信都有3个选择.信与信之间是分步关系.比如说我先放第1封信,有3种可能性.接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3=3^4
(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?
-------------------------------------------------------------
【解析】跟上述情况类似 对于每个旅客我们都有4种选择.彼此之间选择没有关系 不够成分类关系.属于分步关系.如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择.知道最后一个旅客也是4种可能.根据分步原则属于乘法关系 即 4×4×4=4^3
(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?
-------------------------------------------------------------
【解析】分步来做
第一步:我们先选出3本书 即多少种可能性 C8取3=56种
第二步:分配给3个同学. P33=6种
这 里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择.即3×2×1 这是分步选择符合乘法原则.最常见的例子就是 1,2,3,4四个数字可以组成多少4位数? 也是满足这样的分步原则. 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩.
所以该题结果是56×6=336
3、
七个同学排成一横排照相.
(1)某甲不站在排头也不能在排尾的不同排法有多少种? (3600)
---------------------------------------------
【解析】
这个题目我们分2步完成
第一步: 先给甲排 应该排在中间的5个位置中的一个 即C5取1=5
第二步: 剩下的6个人即满足P原则 P66=720
所以 总数是720×5=3600
(2)某乙只能在排头或排尾的不同排法有多少种? (1440)
-------------------------------------------------
【解析】
第一步:确定乙在哪个位置 排头排尾选其一 C2取1=2
第二步:剩下的6个人满足P原则 P66=720
则总数是 720×2=1440
(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种? (3120)
---------------------------------------------------
【解析】特殊情况先安排特殊
第一种情况:甲不在排头排尾 并且不在中间的情况
去除3个位置 剩下4个位置供甲选择 C4取1=4, 剩下6个位置 先安中间位置 即除了甲乙2人,其他5人都可以 即以5开始,剩下的5个位置满足P原则 即5×P55=5×120=600 总数是4×600=2400
第2种情况:甲不在排头排尾, 甲排在中间位置
则 剩下的6个位置满足P66=720
因为是分类讨论.所以最后的结果是两种情况之和 即 2400+720=3120
(4)甲、乙必须相邻的排法有多少种? (1440)
-----------------------------------------------
【解析】相邻用捆绑原则 2人变一人,7个位置变成6个位置,即分步讨论
第1: 选位置 C6取1=6
第2: 选出来的2个位置对甲乙在排 即P22=2
则安排甲乙符合情况的种数是2×6=12
剩下的5个人即满足P55的规律=120
则 最后结果是 120×12=1440
(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)
-------------------------------------------------------
【解析】
这个题目非常好,无论怎么安排甲出现在乙的左边 和出现在乙的右边的概率是一样的. 所以我们不考虑左右问题 则总数是P77=5040 ,根据左右概率相等的原则 则排在左边的情况种数是5040÷2=2520
4、用数字0,1,2,3,4,5组成没有重复数字的数.
(1)能组成多少个四位数? (300)
--------------------------------------------------------
【解析】 四位数 从高位开始到低位 高位特殊 不能排0. 则只有5种可能性
接下来3个位置满足P53原则=5×4×3=60 即总数是 60×5=300
(2)能组成多少个自然数? (1631)
---------------------------------------------------------
【解析】自然数是从个位数开始所有情况
分情况
1位数: C6取1=6
2位数: C5取2×P22+C5取1×P11=25
3位数: C5取3×P33+C5取2×P22×2=100
4位数: C5取4×P44+C5取3×P33×3=300
5位数: C5取5×P55+C5取4×P44×4=600
6位数: 5×P55=5×120=600
总数是1631
这里解释一下计算方式 比如说2位数: C5取2×P22+C5取1×P11=25
先从不是0的5个数字中取2个排列 即C5取2×P22 还有一种情况是从不是0的5个数字中选一个和0搭配成2位数 即C5取1×P11 因为0不能作为最高位 所以最高位只有1种可能
(3)能组成多少个六位奇数? (288)
---------------------------------------------------
【解析】高位不能为0 个位为奇数1,3,5 则 先考虑低位,再考虑高位 即 3×4×P44=12×24=288
(4)能组成多少个能被25整除的四位数? (21)
----------------------------------------------------
【解析】 能被25整除的4位数有2种可能
后2位是25: 3×3=9
后2位是50: P42=4×3=12
共计9+12=21
(5)能组成多少个比201345大的数? (479)
------------------------------------------------
【解析】
从数字201345 这个6位数看 是最高位为2的最小6位数 所以我们看最高位大于等于2的6位数是多少?
4×P55=4×120=480 去掉 201345这个数 即比201345大的有480-1=479
(6)求所有组成三位数的总和. (32640)
---------------------------------------------
【解析】每个位置都来分析一下
百位上的和:M1=100×P52(5+4+3+2+1)
十位上的和:M2=4×4×10(5+4+3+2+1)
个位上的和:M3=4×4(5+4+3+2+1)
总和 M=M1+M2+M3=32640
5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查.
(1)“其中恰有两件次品”的抽法有多少种? (152096)
【解析】 也就是说被抽查的5件中有3件合格的 ,即是从98件合格的取出来的
所以 即C2取2×C98取3=152096
(2)“其中恰有一件次品”的抽法有多少种? (7224560)
【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个
C2取1×C98取4=7224560
(3)“其中没有次品”的抽法有多少种? (67910864)
【解析】则即在98个合格的中抽取5个 C98取5=67910864
(4)“其中至少有一件次品”的抽法有多少种? (7376656)
【解析】全部排列 然后去掉没有次品的排列情况 就是至少有1种的
C100取5-C98取5=7376656
(5)“其中至多有一件次品”的抽法有多少种? (75135424)
【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的
C100取5-C98取3=75135424
6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( )
(A)140种 (B)84种 (C)70种 (D)35种
--------------------------------------------------------
【解析】根据条件我们可以分2种情况
第一种情况:2台甲+1台乙 即 C4取2×C5取1=6×5=30
第二种情况:1台甲+2台乙 即 C4取1×C5取2=4×10=40
所以总数是 30+40=70种
7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种.
-------------------------------------------------------
【解析】至少有3件 则说明是3件或4件
3件:C4取3×C46取2=4140
4件:C4取4×C46取1=46
共计是 4140+46=4186
8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( C )
(A)1260种 (B)2025种 (C)2520种 (D)5040种
---------------------------
【解析】分步完成
第一步:先从10人中挑选4人的方法有:C10取4=210
第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况
则根据分步原则 乘法关系 210×12=2520
9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__
C(4,12)C(4,8)C(4,4)
___种
------------------------
【解析】每个路口都按次序考虑
第一个路口是C12取4
第二个路口是C8取4
第三个路口是C4取4
则结果是C12取4×C8取4×C4取4
可能到了这里有人会说 三条不同的路不是需要P33吗 其实不是这样的 在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含. 如果再×P33 则是重复考虑了
如果这里不考虑路口的不同 即都是相同路口 则情况又不一样 因为我们在分配人数的时候考虑了路口的不同.所以最后要去除这种可能情况 所以在上述结果的情况下要÷P33
10、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 990
【解析】
这是排列组合的一种方法 叫做2次插空法
直接解答较为麻烦,故可先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插10个空位,有P(10,1)种方法;用最后一个节目去插11个空位,有P(11,1)方法,由乘法原理得:所有不同的添加方法为P(9,1)×P(10,1)×P(11,1)=990种.
另先在11个位置中排上新添的三个节目有P(11,3)种,再在余下的8个位置补上原有的8个节目,只有一解,所以所有方法有P311×1=990种.


排列组合问题视频

相关评论:

相关主题精彩

版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

Copyright © 喜物网