我们地理老师说宇宙大小是有限的,那到底有多大,宇宙外面是什么

来自:    更新日期:早些时候
今天我们老师跟我说地理,说宇宙很大,那宇宙有一栋楼那么大吗?~

地球比一栋楼要大得多吧?但地球在宇宙中连一粒细砂都算不上。你想像一下宇宙有多大。

宇宙外面是什么?宇宙到底有多大?相信很多人都曾经试图找到这个问题的答案,事实上物理学家们研究宇宙已经很久了。宇宙之外是什么样子还是未知数。相信看完下面的内容,或许对于您找到答案有所帮助。
首先我们要知道什么是宇宙,宇宙是万物的总称,是时间和空间的统一。宇宙是物质世界,不依赖于人的意志而客观存在,并处于不断运动和发展中,在时间上没有开始没有结束,在空间上没有边界没有尽头。宇宙是多样又统一的;多样在物质表现状态的多样性;统一在于其物质性。宇宙是由空间、时间、物质和能量,所构成的统一体。
宇宙起源是一个极其复杂的问题。 宇宙是物质世界,它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的。宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。


哈勃体积之外

我们可以在某些方面肯定的说宇宙之外是更多的宇宙。天文学家认为太空是无限的,宇宙之外的空间也和可观测到的宇宙一样充满了能量、星系等等存在。如果真的是这样,那么宇宙之外的存在些什么变成了一个非常奇怪的问题。
在哈勃体积之外,你不仅仅会发现更多不重样的行星——看见任何东西都有可能(小编:看到42)。没错,任何东西。如果你看的够远你会看见另一个宇宙的你,他今天早饭没有吃鸡蛋而是吃的燕麦粥,你会看见另一个不吃早饭的你,你会看见一个天没亮就爬起来抢银行的你。实际上,宇宙论者认为如果你观测地足够远,你会进入另一个哈勃体积——一个完美复刻版的我们生活的宇宙。在10188米之外的另一个宇宙里有一个和你完全相同的人做着和你完全相同的事情。听上去不太可能,但是无限这个概念比无限本身还要更加无限。[page]

暗流星系团
2008年天文学家发现宇宙中成团的物质好像正在以极高的速度朝着同一个方向运动,这个现象用可见宇宙中的任何引力模式都无法进行解释。速度达到每小时2百万英里(321.8万公里)。2010年的新进观测结果确认了这种现象——暗流。这种物质的运动过程挑战了所有对大爆炸后宇宙整体物质分布的预测。可能的原因之一:哈勃体积之外的巨大质量结构产生的引力对本宇宙的影响结果。这意味着在我们观测范围之外的无限宇宙中存在着不可确定的构造。这些构造可能以任何形态出现,有可能是一大块物质和能量的结合体,其体量之大超乎人类想象,也有可能是其他宇宙来的奇怪弯曲漏斗状引力。

宇宙是无限多的泡泡
说到底哈勃体积之外的宇宙还是宇宙,只是我们看不到。这些地方和我们观测到的宇宙遵循同样的物理规律和各种常量。宇宙大爆炸后,宇宙就在不断膨胀,膨胀中会导致太空中产生泡泡。每个泡泡里面都是停止膨胀的宇宙,每个泡泡里面都有各自的物理法则。这种理论认为宇宙无限,泡沫本身也是无限(你可以在某个无穷集合中挑一个无穷数,还是包含于这个无穷集合)。即便你能逃出泡泡的边界,泡泡外的宇宙空间依然在膨胀,无论你以多块的速度追赶你都无法探索到其它的泡泡。[page]

黑洞产卵宇宙论
物理学家Lee Smolin提出过一种新的理论,他认为我们宇宙中的每个黑洞都会创造一个新的宇宙。而每一个新的宇宙的物理定律又和之前的宇宙有些许不同。Smolin提出了一种自然选择的宇宙论,如果某些物理法则可更频繁地生成黑洞,就能创造更多宇宙。同时没有黑洞形成的宇宙只能等死。

有许多平行宇宙
关于平行宇宙的理论就太多了,目前接受程度最高的几种理论中,有一种是弦理论的进化版本:认为有几层膜在其它维度震动。简单的说这些涟漪一样的在11维度震动的膜就是我们的宇宙之外的其它宇宙。涟漪运动效应可以帮助解释已观测宇宙的物质分布。这种理论认为重力之所以特殊的原因是重力是从其它维度中的其它宇宙泄露到我们这个维度的这个宇宙的。(这也能解释为什么重力相较其它基本力如此微弱)。宇宙有多大?
想要了解宇宙究竟有多大,请你试着将一枚硬币放在你的面前。假设这枚小小的硬币就是我们的太阳,那么另一颗代表距离太阳最近的恒星:比邻星的硬币就应当放在大约563公里之外。对于生活在中国的读者而言,比如上海的读者,这第二枚硬币几乎要摆放到山东或安徽省境内,而对于一些小国的居民而言,这颗硬币可能都已经放到外国去了。[page]

而这仅仅是太阳和距离它最近的一颗恒星而已。当你试图模拟更大范围内的宇宙空间时,就会麻烦的多了。比方说,相对于你的那颗硬币太阳,银河系的直径将是大约1200万公里,这相当于地月距离的30倍。正如你所看到的,宇宙的尺度是惊人的,几乎没有办法用我们生活中所熟知的距离尺度加以衡量。

但这并不意味着人类丈量宇宙的梦想是遥不可及的。天文学家在长期的工作研究中已经找到一些行之有效的方法去测量宇宙的尺度。以下我们将向你呈现有关的内容:

1 宇宙的尺度

宇宙的尺度我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体
这个星球上没有人知道宇宙究竟有多大。它或许是无限的,也或许它确实拥有某种边界,也就是说如果你旅行的时间足够长,你最终将回到你出发的地方,就像在地球上那样,类似在一个球体的表面旅行。

科学家们对于宇宙具体的形状和大小数据存在分歧,但是至少对于一点他们可以进行非常精确的计算,那就是我们可以看得多远。真空中的光速是一个定值,那么由于宇宙自诞生以来大约为137亿年,这是否就意味着我们最远只能看到137亿光年远的地方呢?

答案是错误的。有关这个宇宙的最奇特性质之一便是:它是不断膨胀的。并且这种膨胀几乎可以以任何速度进行——甚至超过光速。这就意味着我们所能观测到的最远的天体事实上远比它们实际来的近。随着时间流逝,由于宇宙的整体膨胀,所有的星系将离我们越来越远,直到最终留给我们一个一片空寂的空间。

奇异的是,这样的结果是我们的观测能力事实上被“强化”了,事实上我们所能观察到最遥远的星系距离我们的距离达到了460亿光年。我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体。[page]

2 充斥着星系

这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一这是美国宇航局哈勃空间望远镜获得的最深邃的影像之一
这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一。科学家们让哈勃望远镜对准天空中的一小块区域进行长时间的曝光——长达数月,尽可能地捕获每一个暗弱的光点。文中上图是局部的放大,完整的图像是下面这幅图,其中包含有1万个星系,从局部放大图中,你可以看到一些星系的细节。

完整的图像完整的图像
当你看着这些遥远的星系,你可能没有意识到自己正在遥望遥远的过去,你所看到的这些星系都是它们在130亿年前的样子,那几乎是时间的尽头。如果你更喜欢空间的描述,那么这些星系离开我们的距离是300亿光年。

宇宙处于不断的膨胀之中,但与此同时科学家们对于宇宙尺度的测量精度也在不断提高。他们很快找到了一种绝佳的描述宇宙中遥远天体距离的方法。由于宇宙在膨胀,在宇宙中传播的光线的波长将被拉伸,就像橡皮筋被拉长一样。光是一种电磁波,对于它而言,波长变长意味着向波谱中的红光波段靠近。于是天文学家们使用“红移”一词来描述天体的距离,简单的说,就是描述光束从天体发出之后在空间中经历了多大程度的膨胀拉伸。一个天体的距离越远,当然它在传播的过程中光波波长被拉伸的幅度越大,光线也就越红。

如果使用这种描述方法,那么你可以说这些遥远的星系的距离大约是红移值Z=7.9,天文学家们立刻就会明白你所说的距离尺度。[page]

3 最遥远的天体

最遥远的天体最遥远的天体
这张图像中间部位那个不太显眼的红色模糊光点事实上是一个星系,这是人类迄今所观测到的最遥远天体。美国宇航局哈勃空间望远镜拍摄了这张照片,这一星系存在的时期距离宇宙大爆炸仅有4.8亿年。

这一星系的红移值约为10,这相当于距离地球315亿光年。看起来这一星系似乎非常孤单,在它的周围没有发现与它同时期的星系存在。这和大爆炸之后大约6.5亿年时的情景形成鲜明对比,在那一时期,天文学家们已经找到大约60个星系。这说明尽管这短短2亿年对于宇宙而言仅仅是一眨眼的功夫,但是正是在这一短暂的时期内,小型星系大量聚合形成了大型的星系。

但是这里需要指出的是,天文学家们目前尚未能完全确认这一天体的距离数值,这也就意味着其实际距离可能要比现在所认为的更近。在美国宇航局的下一代詹姆斯·韦伯空间望远镜发射升空以替代哈勃望远镜之前,科学家们都将不得不在数据不足的情况下进行估算。[page]

4 最遥远的距离

最遥远的距离最遥远的距离
天文学家能够观测到的最遥远的光线名为“宇宙微波背景辐射”(CMB)。这是抵达地球的最古老的光子,它们几乎诞生于宇宙大爆炸发生的时刻。在大爆炸发生后的短时间内,宇宙非常小,因此相当拥挤,物质太过稠密,以至于光线无法长距离传播。

但在宇宙诞生之后大约38万年之后,宇宙已经变得足够大,光线第一次可以自由地传播。这时发出的光是我们今天所能观测到的最古老的光线,是宇宙的第一缕曙光;它存在于宇宙的每一个方向,无论你把望远镜指向哪个方向,都可以观测到它的存在。宇宙微波背景辐射就像一堵墙,我们最远也只能看到墙这一侧的风景,但是却绝无办法穿墙而过。

那么这些最初的宇宙之光怎么变成微波了呢?这还是因为宇宙的膨胀。随着宇宙的膨胀,当时发出的光波波长被逐渐拉长,经历如此久远的时间(137亿年),它们的波长已经被拉伸到了不可思议的程度。随着宇宙膨胀冷却,现在这一辐射的剩余温度大约仅有-270摄氏度,也就是著名的3K背景辐射。这种辐射的分布显示出惊人地各向同性,各处的差异小于10万分之一。

而如果有朝一日人类终于能够制造出高灵敏度的中微子探测器,那么我们将终于可以突破宇宙微波背景辐射设置的那堵墙,而看到其背后中微子出现时的情景,即所谓的“宇宙中微子背景”。和光子不同,对中微子而言,一般意义上的物质几乎是透明的,它们可以轻而易举地穿过地球,穿过太阳,甚至穿过整个宇宙。正是因为这一特征,一旦我们能够解码中微子中携带的信息,我们将能回溯到宇宙大爆炸之后仅数秒时的情景。[page]

5 星系蝴蝶图

星系蝴蝶图星系蝴蝶图
天文学家们向宇宙张望,他们注意到宇宙中的星系分布并非呈现随机状态,由于引力的作用,星系倾向于相互接近,从而形成规模巨大的聚合体,如星系团,超星系团,大尺度片状结构乃至所谓的巨壁。

天文学家们开始着手纪录这些星系在三维空间中的位置,他们很快成功地制作出较近距离范围内星系的三维分布图,这是一项令人惊叹的成就。大部分此类巡天观察都将注意力集中在距离地球70亿光年之内的范围,但他们在此过程中也发现了许多类星体,这是宇宙中亮度惊人的奇特天体,来自早期宇宙,其距离可能是70亿光年范围的4倍以上。

在全部这些努力中,斯隆数字巡天(SDSS)可能算是规模最大的一个。参与这一项目的天文学家们目前已经基本完成对1/3天空的巡天观察,并在此过程中记录下超过5亿个天体的精确位置信息。而本文此处的配图则来自另一项巡天计划:6dF星系巡天,这是目前规模位居第三的巡天项目。这张图像中之所以会缺失很多地方,是因为银河系的阻挡,很多天区我们都无法进行观测。[page]

6 邻近的超星系团

邻近的超星系团邻近的超星系团
在距离地球比较近的空间内,天文学家们的了解相对而言就会多一些。我们现在知道在距离地球约10亿光年的距离内存在一个超星系团的海洋。这些是被引力作用聚集在一起的大量成员星系。

我们的银河系本身是室女座超星系团的成员,这个超星系团正位于这张图像中中央位置。在这个巨大的超星系团结构中,我们的银河系毫无特别之处,它只是位于一隅之地的普通成员星系而已。在这一宏伟结构中占据统治地位的是室女座星系团,这是一个由超过1300个成员星系组成的庞大集团,其直径超过5400万光年。

另一个超星系团很值得关注,那就是后发座超星系团,因为它的位置恰好位于北方巨壁(Northern Great Wall)的中心位置。北方巨壁是一个大到令人难以想象的巨型结构,其直径约有5亿光年,宽度约3亿光年。我们星系“附近”最大的超星系团是时钟座超星系团,其直径超过5亿光年。[page]

7 暗物质和暗能量

暗物质和暗能量暗物质和暗能量
这个宇宙另外一件令人吃惊的事实是:占据宇宙大部分的成分我们却完全看不到。暗物质是一种神秘的存在,科学家们认为它们遍布宇宙各处,但是我们却看不到也摸不着。它们和光以及任何种类的电磁波都不发生作用,而这正是人类赖以探测宇宙的基础工具。不过它会产生引力,通过它对周遭空间施加的引力效应,科学家们能够感受到它们的存在。

是的,我们能够感觉到暗物质确实存在。比如我们所在的室女座超星系团大约拥有10的15次方倍太阳质量,但是整个超星系团的光度却仅有太阳的3万亿倍。这就意味着室女座超星系团的光度相比其质量所应当拥有的光度小了约300倍。这样的事实是难以解释的,但是如果考虑到这其中遍布大量拥有质量但却不发光的暗物质,一切也就不奇怪了。

事实上,根据计算结果,宇宙中的暗物质含量是我们平常所见的普通物质的5倍。但是暗物质尽管强大,却仍然不足以统治宇宙。真正支配着我们这个宇宙的力量来自另一种神秘物质:暗能量。普通物质和暗物质有一个共同点,那就是它们都拥有质量,并向周围空间施加引力影响,换句话说,它们的作用是让物质聚拢,让宇宙减速膨胀甚至最终收缩。然而,当科学家们观测宇宙,试图分辨出宇宙究竟是在减速膨胀还是在收缩时,他们惊骇地发现事实完全出乎他们的预料——宇宙根本没有收缩或减速,它正在加速膨胀!毫无疑问,存在一种未知的强大到异乎寻常的力量,它不但独力抵抗了整个宇宙中所有普通物质和暗物质产生的引力作用,甚至还推动整个宇宙加速膨胀。对于暗能量的发现最近刚刚被授予了今年的诺贝尔物理学奖,但是尽管有了这样的巨大进展,科学家们对于究竟什么是暗能量却依旧毫无头绪,一无所知。现在有关这一课题的理论几乎就相当于“虚位以待”,等待着未来出现一个更加完美的理论能摘取成功解释暗能量本质的桂冠。[page]

8 宇宙之网

宇宙之网宇宙之网
星系巡天的结果显示我们的宇宙似乎显示一种“泡沫网状”结构。几乎所有的星系都分布在狭窄的“纤维带”上,而在它们的中间则是巨大的空洞,天文学上称为“巨洞”。这些巨洞的体积巨大,有些直径可达3亿光年,其中几乎空无一物。但是这样说并不正确,因为尽管我们看上去那里确实是什么也没有,但实际上这里充斥着暗物质。

这里这张图是一份计算机模拟结果,它显示我们的宇宙呈现一种纤维网状结构,其中分布着节点,纤维带和层。这种复杂结构的起源来自宇宙微波背景辐射中微小的涟漪,这是其中密度微小变化的体现。随着宇宙膨胀,这些微小的高密度区去逐渐吸引更多的物质向其聚集,这种效应持续上百亿年,其结果是惊人的——它造就了我们今天所见的宇宙。[page]

9 检验宇宙模型

检验宇宙模型检验宇宙模型
2005年,一个国际天文学家小组试图检验现有的宇宙学理论是否正确。他们进行了一项名为“千年运行”的模拟计划,在计算机中他们模拟100亿个粒子在一个边长为20亿光年的立方体空间中,按照我们现有的理论去作用于它们,是否能得到某种我们所预期的结果。

这项模拟实验中考虑了普通物质,暗物质和暗能量因素,成功地再现出宇宙从混沌逐渐显现类似于我们今天所观察到的宇宙大尺度结构。在模拟运行的过程中,研究人员们目睹了宇宙中大质量黑洞的出现,强大的类星体发出剧烈的辐射,模拟的结果中还出现了大约2000万个星系。正如文中此处展示的那样,研究人员们发现模拟的结果产生出一个和我们所观察到的现实宇宙非常相似的状态。

这个比较复杂,涉及爱因斯坦的相对论,爱因斯坦曾提出宇宙有限而无边的理论,简单说就是宇宙相对我们地球来说有界限但却找不到它的边际。当代科技发现了宇宙的红移现象,及行星和星云的能量在朝远离宇宙中心的方向扩散,证明宇宙是在膨胀的。至于宇宙大小是有限的那么宇宙外面是什么这个问题不能简单地从空间的角度看,因为宇宙学很大程度上涉及到时间,及时空坐标系,而不是像我们现在地球上这样看 物体的膨胀单单看空间体积就可以了(因为我们的速度相比较光速是可以忽略不计的)。
此外宇宙学的很多理论是得不到证明的,比如即使现在证明了宇宙是有限的,我们也不可能飞到宇宙的边际去证明。这也就是施蒂芬霍金——当代最伟大的宇宙学家始终不能获得诺贝尔奖的原因。

针对YLouis的回答的补充:
1917年,爱因斯坦发表他的第一篇宇宙论文《根据广义相对论对宇宙学所作的考察》。象他多次以一篇论文开创一个领域一样,这篇论文宣告了相对论诞生。虽然时间已经过去六十多年了,但是,这篇论文所引进的许多观念至今仍富有生命力。在探索宇宙中,爱因斯坦首先指出无限宇宙与牛顿理论二者这间存在着难以克服的内在矛盾。在原则上,根据牛顿力学不能建立无限宇宙这一物理体系的动力学。从牛顿理论和无限宇宙这两点出发,根本得不到一个自洽的宇宙模型。因此,必然是:或者修改牛顿理论,或者修改无限空间观念,或者对二者都加以修改。爱因斯坦放弃了传统的宇宙空间三维欧几里得几何的无限性。他根据广义相对论建立了静态有限无边的自洽的动力学宇宙模型。在这个模型中,宇宙就其空间广延来说是一个闭合的连续区。这个连续区的体积是有限的,但它是一个弯曲的封闭体,因而是没有边界的。
这里我不过说了通俗易懂点:)。
红移确实和“有限无边”理论是两码事。
一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。

光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。

红移实际上是证明史蒂芬霍金的宇宙爆炸论的有利证据。即星体的能量在朝远离中心的方向扩散。

至于史蒂芬霍金为什么不能获得诺贝尔奖,我也想说明一下史蒂芬霍金的理论已经获得大多数科学家的认可,他本人也被公认为目前最伟大的理论物理学家,注意是理论物理学家。
因为诺贝尔奖的获奖项目必须有严密的理论并且有实际成功的实验予以证明。无论是物理学奖、化学奖、生物学奖 、以至经济学奖都是如此。为证明史蒂芬霍金的宇宙爆炸理论,我们不可能,也没有科技飞到宇宙的中心,实地测量那里的能量谱线,又飞到宇宙的边际,测量红移谱线,进行比对论证。这也是史蒂芬霍金一直不能得到诺贝尔奖的根本原因。

再补充:
在“有限无边”的说明中,我似乎没有提到所谓的中心一词……
至于宇宙中心,可能我应该解释一下,这实际指的是宇宙最初大爆炸的起源地。宇宙爆炸模型通俗讲就是宇宙的形成起源于一次大爆炸,而爆炸源地、也就是这里所指的宇宙中心,那里的物质密度非常的高。而宇宙的膨胀就是爆炸形成的各类星体向爆炸源的相反方向远离。目前我们是通过红移现象观察到的。这个解释与“无论在宇宙中的哪一点上,看到的周围的星体都是有红移运动的”是一致的。因为所有的星体都是在向远离中心的相反方向移动,只不过他们的红移不同罢了。

另外,简单学过相对论的都知道,如果物体的运动速度接近光速级别,那么它的空间尺寸会变小。举个例子,假设一把尺,以接近光速的速度掷出,那我们看道运动中尺的长度要比静止时短。所以在宇宙空间的讨论时,应该要考虑时间的坐标。

至于史蒂芬霍金不能获得诺贝尔奖的原因,大家各有各的想法,在此不过交流,没有必要强求同一。

或许是我的表达能力不够好,确实,宇宙就是那次爆炸形成的。这里所谓的中心,其实是指宇宙目前质量密度相对最大的地方,有点像核心区域的意思。总所周知 ,宇宙物质的分布是不均匀的。就好像太阳系,以太阳为中心旋转,而太阳系又位于银河系的边缘,围绕银河系旋转一样,中心的物质质量和密度是最大的。

至于宇宙空间的讨论,应该还是要考虑时间的因素。很简单,我们是站在地球的角度在讨论宇宙行星等的运动。好比上面提到的“各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去”。既然有速度,有红移谱线就一定有时间这个参量。速度是单位时间物体通过的距离,谱线能量计算涉及频率,而频率正是周期的倒数。这都涉及时间的参量。

赫赫,有限无边不是你这样理解的。有限无边是指空间本身受到宇宙中物质引力作用而弯曲闭合。既然空间已经闭合了,那么就没有“外面”一说了。红移和这又是两回事。红移事实上确定了一个我们能观测到的宇宙大小的边界(大概五百亿光年),但是这远不是宇宙的全部。
另——史蒂芬霍金是最伟大的宇宙学家,但不一定是最伟大的物理学家。

另:那我也补充一下吧。皇者蓝剑找到的资料都是正确的,但是很可惜他对这些理论的理解有偏差。有限无边模型涉及到的是一个闭合的空间,这是什么意思呢?就是说宇宙既没有边际,也没有所谓中心。爱因斯坦的有限无边模型是静态的,而膨胀模型(即爆炸模型)是后来基于相对论发展的动态模型。但是爆炸模型并不意味着就有一个宇宙中心,所有物质都是以这个中心向外扩散——这是通常人们理解膨胀模型时以自己的三维经验想当然描绘出来的一个情景。膨胀模型意味着无论在宇宙中的哪一点上,看到的周围的星体都是有红移运动的。所以在皇者蓝剑后面的评论中的“飞到宇宙的中心,实地测量那里的能量谱线,又飞到宇宙的边际,测量红移谱线,进行比对论证”是不正确的想当然的想法。另外,这个问题仅仅涉及到相对论中对于宇宙空间维度的描述,在公式推导的时候会涉及到四维张量,但是仅就这个问题的答案而言,不涉及时间维度的性质。
还有就是:宇宙学是理论物理的一个分支,但绝不是全部,Landau、Feyman都是伟大的理论物理科学家,但是不是宇宙学家。所以只能说史蒂芬霍金是最伟大的宇宙学家,但是说他是最伟大的理论物理学家甚至最伟大的物理学家,恐怕是见仁见智了。

那我就不好意思再补充一下了。再次说明,在大爆炸理论中宇宙从来没有,以后也不会有一个所谓的中心。可能你想当然的以为爆炸必定是以空间中一个点开始的,错!在爆炸处包含了现有的整个宇宙空间,宇宙空间是从爆炸开始时才产生的,因此整个宇宙空间都是当时的那个“爆炸点”!这一点是由广义相对论的场方程解出来的(即空时起点),如果不懂,建议去读读看爱因斯坦的《相对论的意义》。有些宇宙学的东西可能超乎一般人的想象,不是几本科普读物能讲清楚的。
另外,或许你是简单得学过一点相对论,可惜你弄混了相对论的数学手段和结论。相对论的推导确实都是以四维张量为基础的,但是并非所有的结论都是和时间有关。当我们得到一个和时间无关的描述的时候,我们大可以不讨论时间。比如E=mc2这个尽人皆知的式子(或许用得有点滥了),描述的就是所有物体的能量和质量之间的关系,你怎么能说它还和时间有关呢??时间在相对论中确实重要,但是不必谈及相对论必提时间,谢谢。

恐怕你的知识方面也有所欠缺吧。不仅在空间上,宇宙没有中心这一概念,在密度分布上,更没有所谓中心一说,不知道你这个“众所周知”是什么地方来的?反正我们搞宇宙学的同学可没这样跟我提过。注意:宇宙膨胀并不是各个星体像爆炸一样向外飞(估计你是有一个这样的错觉,才认为有一个中心区域是密度最大处),而是空间自身的膨胀。宇宙或许有密度起伏的地方(星系、星团等),但是在宇宙学的大尺度上,一直认为宇宙的密度是均匀的,不均匀性实际上是由引入不确定扰动的初始条件产生的,关于这个问题涉及到宇宙初始状态下物理定律的描述问题,在现今理论框架内无法解决。
另外,不要以为提到频率、速度就一定要扯上时间,这和这个宇宙形态的问题毫不沾边。就好比酿葡萄酒就要种葡萄,种葡萄就要涉及土地翻耕,那我在品尝一瓶美酒的时候,难道还要涉及到种葡萄的时候要用什么形状的铁锨来翻地么?hehe。都说了,数学描述与手段是一回事,结论的讨论又是一回事,即使是初中物理,也很经常遇到解题时要引入速度与时间参量,解完了却发现某些结果是时间无关的常量的事情吧?红移和时间无关,只和星体与地球的距离有关,这恐怕是你随便baidu一下都能找到的事实。

科学家正在研究,估计地球毁灭之前人类是无从得知阿


我们地理老师说宇宙大小是有限的,那到底有多大,宇宙外面是什么视频

相关评论:

相关主题精彩

版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

Copyright © 喜物网