构造岩类型有哪些?

来自:    更新日期:早些时候
主要岩石类型有哪些?~

(一)闪长岩类
闪长岩类常见的岩石类型除闪长岩、石英闪长岩外,还有向正长岩过渡的二长闪长岩;向辉长岩过渡的辉长闪长岩。以及相应的浅成相岩石闪长玢岩、微晶闪长岩。
1.闪长岩(diorite)
主要由斜长石和角闪石组成,其中斜长石为中长石,常具环带构造,含量约为60%~70%;角闪石为黄褐色或绿色,含量30%±。次要矿物为黑云母、单斜辉石,有时含<5%的石英,其中辉石与角闪石可见反应边结构(照片3-69,70,74)。副矿物为磷灰石、榍石、磁铁矿。当岩石中暗色矿物>40%时,颜色深,称为暗色闪长岩;当岩石中暗色矿物<20%时,称为浅色闪长岩。岩石多具半自形粒状结构(照片3-72,73),有时也见似斑状结构(斑晶为斜长石、暗色矿物)。块状构造。根据第二章“火成岩进一步命名原则”闪长岩常见的有黑云母闪长岩、辉石闪长岩(照片3-69)、石英辉石闪长岩(照片3-70)、蚀变闪长岩(照片3-74~76)等。
2.石英闪长岩(quartz diorite)
特点是含有5%~20%的石英。主要矿物仍为斜长石(中-更长石)和少量暗色矿物(角闪石、黑云母、辉石),有时含少量钾长石、紫苏辉石(照片3-80)。石英和钾长石常呈他形粒状,分布于斜长石粒间(照片3-77,81)。岩石具半自形粒状结构(照片3-77~79)。块状构造。
3.辉长闪长岩(gabbro-diorite)
是闪长岩向辉长岩过渡的一种类型。主要矿物斜长石以中长石为主,亦见拉长石;暗色矿物除角闪石外,含有辉石(单斜辉石、紫苏辉石、古铜辉石)和黑云母。副矿物为榍石、磷灰石、磁铁矿等,有时它们的含量较多。半自形粒状结构和不等粒结构、似斑状结构,其中颗粒较大的斜长石经常为拉长石,而较小者为中长石。块状构造、斑杂构造。这种岩石往往与同化混染作用有关(照片6-83)。
4.二长闪长岩(monzodiorite)
是介于正长岩和闪长岩之间的一种类型。根据IUGS分委会意见不再使用正长闪长岩(syenodiorite)一词。二长闪长岩特点是岩石中除斜长石外,含有较多的钾长石,二者含量比约为3∶1,即钾长石含量占长石总量的10%~35%,斜长石则占长石总量的65%~90%。斜长石成分为中长石、更长石,钾长石多为正长石、条纹长石。暗色矿物较多,含量约20%,主要为角闪石和黑云母,少量单斜辉石,富碱的岩石中出现碱性暗色矿物,常见的是霓石、霓辉石、富钠闪石等,石英含量<5%或不含。多具半自形粒状结构(照片3-83),钾长石自形程度一般较差,往往呈他形粒状分布于较自形的斜长石粒间,因此常见二长结构(照片3-71)。块状构造。当岩石中含有5%~20%的石英时,称石英二长闪长岩(照片3-83,84),有时还可见石英与钾长石构成显微文象结构(照片3-83)。当岩石具似斑状结构时,称斑状二长闪长岩(照片3-82)
5.细晶闪长岩(aplite-diorite)
是闪长岩的浅成相岩石。主要特点是矿物粒径细小(约为0.2 mm),分布均匀,具细粒或微粒柱粒状结构(照片3-85)。其矿物成分同闪长岩,主要由中长石和角闪石组成,块状构造。
6.闪长玢岩(dioritic porphyrite)
闪长岩类的浅成相岩石,包括闪长玢岩(照片3-86,87)、石英闪长玢岩(照片3-88~90)、辉长闪长玢岩、二长闪长玢岩(照片3-91)。与微晶闪长岩不同的是该类岩石具斑状结构,斑晶主要成分为斜长石(中长石为主)和角闪石,有时可见黑云母、辉石,基质成分与斑晶基本相同。石英闪长玢岩的基质中含有石英,并常与斜长石构成显微文象结构(照片3-90)。岩石的基质具显微晶质结构、隐晶质结构,辉长闪长玢岩可具似间粒结构(较自形的斜长石微晶杂乱分布,其间充填暗色矿物、磁铁矿)。
(二)正长岩类
该类岩石主要种属包括正长岩、石英正长岩和碱性正长岩、英碱正长岩、歪长棕闪正长岩及相应的浅成岩。
1.正长岩(syenite)
主要矿物为碱性长石(正长石、微斜长石、条纹长石),含量70%~80%;暗色矿物为角闪石、黑云母,有时见单斜辉石。不含石英或含量<5%(照片3-92),可含少量斜长石(钠长石、更-中长石)。个别变种以钠长石为主(含量70%左右)称之为钠长正长岩(钠正长岩)。岩石具半自形-他形粒状结构(照片3-92)。块状构造。同样根据火成岩进一步命名原则,正长岩常见的有角闪正长岩、辉石正长岩、钠长石化正长岩(照片3-95)。
2.石英正长岩(quartz syenite)
与正长岩的区别是含有5%~20%他形粒状的石英分布于长石间(照片3-94),其他矿物同正长岩,其中碱性长石(正长石、微斜长石、条纹长石)含量70%~80%,少量斜长石(钠长石、更-中长石)。当石英含量≤5%时,可称含石英正长岩(照片3-93)暗色矿物为角闪石、黑云母,有时见辉石。半自形粒状结构,碱性长石与石英常组成显微文象结构。块状构造。根据暗色矿物进一步命名,常见的有英辉正长岩,其中辉石为透辉石或含少量霓辉石分子的透辉石(后者增多时向碱性正长岩过渡)。
3.碱性正长岩(alkali syenite)
浅灰色、灰色。主要矿物为碱性长石、碱性暗色矿物,其中碱性长石含量可达70%~80%,常见的有正长石、歪长石、微斜长石、钠长石;碱性暗色矿物为霓石、霓辉石、钠闪石、钠铁闪石、绿钠闪石、棕闪石。次要矿物有富铁黑云母、普通辉石,有时还含有异性石或少量闪叶石等。根据碱性暗色矿物或特殊矿物进一步命名(命名时在“正长岩”前可不加“碱性”二字),如霓辉正长岩(照片3-102~105)、异性石正长岩(照片3-106~110)、闪叶石正长岩。碱性正长岩多为半自形粒状结构,亦可见嵌晶结构,在大的长石中包有定向排列的霓石或钠闪石(照片3-103),有时它们还呈似文象状。块状构造。
4.英碱正长岩(nordmarkite)
由碱性长石(常见微斜长石、钠长石)和碱性暗色矿物(主要为钠铁闪石、霓石)组成,碱性长石含量可达70%~80%。该岩石的最大特点是含有5%~10%的石英。副矿物为磷灰石、榍石、磁铁矿。岩石具半自形粒状结构,块状构造。根据碱性暗色矿物进一步命名,如霓辉英碱正长岩(照片3-113)。
5.歪长棕闪正长岩(leetrwfonteinite)
主要特点是含大量歪长石,其含量可达80%,暗色矿物以棕闪石为主。棕闪石(barkevikite)是玄武闪石含钛、钠高的变种,是富钠的碱性角闪石之一。褐棕色,多色性Ng≈Nm—红褐色,Np—浅褐色或浅黄色。与褐色角闪石、玄武闪石区别是它的消光角小于前者而大于后者,它的光轴角小只有52°。次要矿物为霓辉石、普通辉石(含钛)、黑云母。副矿物为磷灰石、磁铁矿。岩石具半自形粒状结构(照片3-114)、斑状结构、似粗面结构,块状构造。当暗色矿物不以棕闪石为主时可在“歪长正长岩”前加所含暗色矿物,如霓辉歪长正长岩。
6.正长斑岩(syenite-porphyry)
相当于正长岩的浅成岩,多具斑状结构,斑晶为碱性长石(正长石、微斜长石)。少量角闪石、黑云母或辉石。基质为显微晶质结构、粗面结构(照片3-115),主要由正长石组成,其中可含少量他形石英。当石英含量>5%时,称为石英正长斑岩(照片3-116)。当岩石不具斑状结构,而呈微-细粒半自形结构时,命名为微晶正长岩。根据次要矿物按前少后多的原则进一步命名,如黑云石英正长斑岩、黑云霓辉微晶正长岩(照片3-117)等。
7.细晶正长岩(aplite-syenite)
具细晶结构即全晶质细粒粒状结构,岩石由细粒的碱性长石(正长石、歪长石)组成,极少有暗色矿物。当岩石以歪长石为主时,称歪长细晶正长岩(旧名歪正细晶岩)。歪长石(可有少量正长石)呈长条状半定向或错综排列,其边缘常见特征的锯齿状,有时歪长石粒间,可见少量细粒黑云母、碱性角闪石和石英等矿物,构成歪正细晶结构(照片3-118)。
8.碱性正长斑岩(alkali syeniteporphyry)
是碱性正长岩的浅成相岩石。主要成分为碱性长石(正长石或歪长石、微斜长石)和碱性暗色矿物(霓辉石、霓石、钠质角闪石、棕闪石),有时含少量霞石。副矿物榍石、磁铁矿等。多具斑状结构,斑晶和基质成分基本相同,基质粒径细小,具显微晶质结构,有时为似斑状结构。块状构造,也可见熔渣构造、流动构造。
(三)二长岩类为闪长岩和正长岩类之间的过渡类型岩石,主要包括二长岩、石英二长岩及其相应的浅成相岩石。
1.二长岩(monzonite)
主要特点是碱性长石和斜长石含量相近,二者含量变化在35%到65%之间,其中斜长石为中长石或拉长石(向辉长岩过渡时),有时为更长石;碱性长石为正长石、微斜长石、条纹长石,其自形程度较斜长石差,有时见斜长石呈环带状分布于碱性长石中;暗色矿物一般较正长岩略多,主要为角闪石、黑云母(照片3-98),少量辉石。岩石常具典型的二长结构(照片3-96~98,101)。也见半自形粒状结构、似斑状结构(照片3-97)。块状构造。当岩石偏碱性时,出现少量碱性暗色矿物,命名时将碱性暗色矿物冠于“二长岩”前,如霓辉二长岩(照片3-111)、钠闪二长岩。
2.石英二长岩(quartz monzonite)
与二长岩区别是含石英5%~20%(照片3-100),其他成分同二长岩,碱性长石和斜长石含量仍变化在35%到65%之间。当石英含量≤5%时可称含石英二长岩。暗色矿物一般略低于二长岩,以黑云母、角闪石为主,有时含辉石。当岩石偏碱性时,出现碱性暗色矿物。根据暗色矿物进一步命名,如角闪石英二长岩(照片3-99)、霓辉石英二长岩(照片3-112)、棕闪石英二长岩。
3.二长斑岩(monzonite-porphyry)
是与二长岩成分相当的浅成相岩石,斑状结构,斑晶为斜长石(中长石、钠-更长石)和钾长石(正长石、条纹长石),少量暗色矿物(黑云母、角闪石或辉石)。有时见斜长石斑晶周围有钾长石环边,构成正边结构(照片3-119)。基质成分与斑晶相同,由两种长石微晶和少量暗色矿物组成,具显微晶质结构和隐晶质结构;有时可见间碱结构,即较自形的斜长石粒间充填他形碱长石微晶(照片3-119)。当斑晶和基质中出现少量石英时,称为石英二长斑岩(quartz monzonite-porphyry),其他成分同二长斑岩,基质可见球粒结构和霏细结构。

地质构造是指在地球的内、外应力作用下,岩层或岩体发生变形或位移而遗留下来的形态。地质构造有褶皱、节理、断层三种基本类型。
褶皱:分为背斜和向斜。背斜:岩层向上弯曲、中心部位岩层较老,两侧岩层依次变新;向斜:岩层向下弯曲、中心部位岩层较新,两侧岩层依次变老。

节理:自地表向下随深度加大,节理的密度逐渐降低。

断层:具有显著位移的断裂,断层在地壳中广泛发育,但其分布不均匀。

拓展资料:
主要分类:
地质构造因此可依其生成时间分为原生构造(primary structures)与次生构造(secondary structures或tectonic structures)。次生构造是构造地质学研究的主要对象,而原生构造一般是用来判断岩石有无变形及变形方式的基准。构造也可分为水平构造、倾斜构造、断裂和褶皱。
地壳或岩石圈各个组成部分的形态及其相互结合方式和面貌特征的总称。地质构造的规模,大的上千公里,需要通过地质和地球物理资料的综合分析和遥感资料的解译才能识别,如岩石圈板块构造。
小的以毫米甚至微米计,需要借助于光学显微镜或电子显微镜才能观察到,如矿物晶粒变形、晶格的位错等。贵州位于华南板块内,处于东亚中生代造山与阿尔卑斯-特提斯新生代造山带之间,横跨扬子陆块和南华活动带两个大地构造单元。在已知1400Ma地质历史时期中经历了武陵、雪峰、加里东、华力西-印支、燕山-喜山等5个阶段。
参考资料:百度百科-地质构造

由变形作用使岩石的结构和构造,甚至矿物成分发生变化,形成一种组构、矿物成分与原岩不同的新类型岩石,称之为构造岩(tectonite)。鉴于除热接触变质岩以外的几乎所有变质岩类型的形成中,差异应力都起着不同程度的作用,因此广义的构造岩包括了区域变质岩。我们这里所指构造岩为狭义的构造岩,即发育于断层带内的由断层作用将断层带或剪切带内的岩石改造而成的新生岩类,其狭义同义词为断层岩(fault rock)。

有关构造岩研究已有100多年的历史。最初人们普遍认为构造岩是脆性变形的产物,破裂起主导作用,故称其为碎裂岩或断裂构造岩等,并按碎裂程度的不同,将其划分为断层角砾岩-碎裂岩-糜棱岩系列。这种认识持续了将近一个世纪。20世纪70年代以来,随着对地壳较深层次的变形及其有关岩石的深入研究、岩石变形实验的不断完善、金属物理学位错理论的引入和透射电子显微技术在显微构造分析中的应用,使得对构造岩尤其是对糜棱岩的研究,有了突破性的进展。结合岩石变形实验及对天然变形岩石的观察研究,人们发现构造岩中的糜棱岩并不是脆性破碎后经强烈研磨而成的产物,而是经过晶体内部位错组织的活动性所引起,即前述晶质塑性变形作用。从此人们改变了对构造岩的认识,将构造岩划分为碎裂岩系列(cataclasite series)和糜棱岩系列(mylonite series)。前者以脆性变形为主,后者以塑性变形为主,它们分别代表了地壳浅部断层带和较深部剪切带的产物(Sibson,1977)。

对于构造岩类型的划分,目前较流行的方案主要有两类:以结构为主的分类,(Sib-son,1977;见表5-1)和按成因机制分类(Wise et al.,1984,见图5-1;王嘉荫,1978;孙岩等,1985)。尽管对于岩石的结构分类也隐含着某些成因信息,但在很多情况下很难在实际工作中直接确定岩石的成因与主要矿物的变形机制。因此,目前更多的学者还是强调了更为实用的构造岩结构分类。本书主要结合Sibson(1977)对构造岩类型的划分,对代表了地壳不同层次变形的构造岩类型,按未固结构造岩、碎裂岩系列、假玄武玻璃、糜棱岩系列、高压-超高压构造岩及叠加构造岩几大类特征简述如下。

一、未固结构造岩未固结构造岩(incohesive tectonites)是指沿着地壳浅部层次或近地表断层,构造的剪切作用改造了固结的岩石,使之通过机械碾碎而发生细粒化。细粒化的岩石在变形后并未得到结晶物质或更细粒物质的胶结及相应的成岩作用,而是保留了松散状态的细粒物质集合体,即未固结构造岩。

断层中破碎微弱的地段以断层角砾为主,其中岩石碎块为主(>30%),基质为同成分的碎屑。碎块定向性差时称为断层角砾(fault breccia);碎块定向性强时可称为透镜体化带或构造透镜体。破碎强烈地段发生强烈的机械碾碎,并伴有长石等矿物的水化和分解形成粘土矿物,形成断层泥(fault gouge)。断层泥常常是一种沿断层分布的、由破碎和研磨作用而形成的糊状物质,其主要成分为岩石碎屑、矿物碎屑、岩粉和粘土矿物。断层泥中常常发育不同程度的定向构造,如粘土矿物的定向面理、矿物碎屑流动条带、碎斑的定向排列等。这些定向构造主要由碎裂流动、沿正向或反向吕德尔剪切滑动形成。Cladou-hos(1999)在研究美国加里福尼亚州死亡谷未固结构造岩时根据断层角砾及断层泥中定向面理、流动条带、吕德尔剪切发育情况和碎块定向程度将断层角砾和断层泥分为四种类型:

①流动条带断层泥:碎块定向强,流动条带和碎块定向大致与剪切面平行,粘土矿物少,吕德尔剪切不发育。

②面理化粘土质断层泥:基质中粘土矿物含量高,碎块定向强。粘土矿物定向和碎块定向均与剪切面斜交,发育少量同向吕德尔剪切。

③弱面理化断层泥:碎块可以有磨圆,但定向弱,可发育同向和反向吕德尔剪切。

④断层角砾:碎块棱角明显,无磨圆,碎块间主要沿同向及反向吕德尔剪切滑动。

对准噶尔盆地南缘晚新生代断裂带的断层泥研究发现,断层泥主要可分为两类:流动条带状断层泥(照片5-001,5-002)和条带不发育的断层泥(照片5-003,5-004)。前者可能反映了断裂的运动方式主要是非地震的稳态滑动;而后者则可能主要反映了断层的在地震状态下的快速黏滞滑动(胡玲等,2005,2006)。

断层带中未固结构造岩记录了有关断层新活动的各种信息;如断层泥中粘土矿物组合、成分、结晶程度可以判定断层活动时物理环境和活动方式(张秉良等,2000,2002),显微构造特征还可判断断层活动方式、性质、期次关系等。(胡玲等,2005,2006)如张秉良(2000)根据云南小湾断裂断层泥中粘土矿物的结物、形态、化学组成、晶胞参数等特征判断该断裂以蠕滑活动为主;而香山-天景山断裂中不同断层泥类型反映了断裂西段以稳态滑动为主,中段为黏滞滑动,东段则二者兼存(张秉良等,2002)。

近20年来,国内外对松散沉积物中断层的微观研究也取得了不少进展。研究发现,松散沉积物中的活动断层在微观上可表现为变形条带(deformation bands)、变形条带的带(zone of deformation bands)、滑动面(slide surfaces)、较宽的断层带、微破碎带、碎屑颗粒集中的带和铁质有机质集中的带等(林传勇等,2008)。总之,显微构造研究可作为松散沉积物中宏观形迹不明(隐形)断层及其是否伴有古地震事件等行之有效地手段之一。

二、碎裂岩系列岩石以脆性变形为主,显著特点是无定向或具弱定向,岩石中裂隙发育,岩石被裂隙切割成大小不一的碎块。随应变加大,碎块间位移加大,粒度变细,碎块间碎基增多,碎块逐渐被碎粒和碎粉所包围,呈残留碎块状,以至最后岩石全部变为碎粒或碎粉。碎裂岩系构造岩的形成始于破裂与微破裂作用。破裂作用的发生,使得岩石破碎成大小碎屑。进一步的递进应变,一方面在碎屑中形成更多的破裂与微破裂,另一方面相邻碎屑之间会发生相对滑移和旋转,产生摩擦而使得碎屑被碾碎形成基质。在此过程中,细小的新生基质是较大颗粒的碎屑经过机械碾碎形成,其间未发生显著的化学作用。依据变形岩石中新生细小基质与残余碎屑的含量,可以将碎裂岩系列岩石划分为碎裂××岩、初碎裂岩、碎裂岩和超碎裂岩共四类。

(1)碎裂××岩:岩石初步碎裂化,但细小的基质含量很低,小于10%。岩石基本保持原岩面貌,细小基质常常在杂乱分布的裂隙中发育(照片5-005,5-006)。

(2)初碎裂岩(protocataclasite):是岩石发生断层脆性碎裂作用的初级产物。岩石具碎粒结构或碎斑结构(照片5-007~5-010),碎块位移或转动较大,碎块呈残留碎斑状,被碎基所包围。碎基含量约占10%~50%,但岩石中碎斑仍多于碎基,碎斑粒径已变小,一般小于2mm。碎斑中常见破裂和边缘粒化现象。初碎裂岩在不同度上保留原岩的性质和结构。

(3)碎裂岩(cataclasite):由于原岩遭受较强烈破碎后所形成的一种动力变质岩石,岩石具碎裂结构,碎斑少而小,岩石大部分已破碎为碎粒、碎粉,碎基约占50%~90%。颗粒趋于均一,原岩结构基本难以辨认(照片5-012~5-013)。若碎粒较多,由碎粒与碎粉组成碎粒结构,也称为碎粒岩。

(4)超碎裂岩(ultracataclasite):岩石遭受断层作用强烈研磨粉碎而成的脆性断层岩。岩石中碎斑小而少见,碎基分布较均匀,多为细小的碎粉状,占90%以上。原岩结构已无法辨认(照片5-014,5-015)。大部分由碎粉组成,故也称之为碎粉岩。

在碎裂岩系列中,除碎裂××岩外,若其他岩石的原岩成分和结构仍可辨,可以用原岩名称命名,如花岗质初碎裂岩等;若原岩难以确定,则直接称碎裂岩、超碎裂岩等;也可以主要矿物的名称命名,如长英质碎裂岩等。

碎裂岩系列岩石以脆性变形为主。碎裂岩的显著特点是无定向或弱定向,大小不等的碎屑物质被细小碎屑或者变形同期注入的脉体物质,如方解石脉或石英脉所胶结。而碎屑物质常常表现出被溶解改造的迹象。碎裂岩的破碎程度(碎屑和基质的粒度及含量),由碎裂××岩至超碎裂岩是依次递变的。碎裂岩往往发育呈带状,构成断层带。由围岩向碎裂××岩和由碎裂化岩石向超碎裂岩经常表现为逐渐过渡现象。

在一些特殊情况下,碎裂岩可以具有显著的定向性,特别是当岩石中含有更多的云母类矿物颗粒时更为突出,表现为云母颗粒定向排列,或云母集合体构成成分条带,定向性构成的面理可以呈间隔性或透入性。沿着断层带的剪切作用,还可以在碎裂岩中形成类似韧性剪切带中经常发育的S-C组构。

三、假玄武玻璃假玄武玻璃(pseudotachylite)最早由Shand(1916)提出,用于描述南非Parijjs地区一种由冲击作用形成的呈脉状的暗色隐晶质岩石。岩石一般颜色较深,常呈黑色或黑绿色,外貌很像玄武质玻璃(照片5-016~5-019),故称假玄武玻璃,也有人称玻化岩或构造熔岩、假熔岩(何绍勋等,1996)。岩石一般隐晶质、玻璃质结构或玻基碎斑结构(照片5-020~5-026)。玻璃基质可呈流动构造(5-020,5-024,5-025)或碎粉状构造(5-026),还可见球状、树枝状微晶结构,气孔和杏仁构造和球粒构造等(照片5-021,5-022)。有时可以见到局部结晶,这些结晶质可能是假玄武玻璃形成过程中保留下来的,也可能是玻质脱化而成的。碎斑大小不等,但多在0.2mm以下,呈浑圆状或不规则状。成分依原岩而不同,可以是长石、石英或其他矿物,含量一般较少。碎斑结构的产状主要是因为假玄武玻璃形成时时间短,以及碎屑矿物成分、变形形态和熔体成分的影响等,一般达不到母岩熔融,使假玄武玻璃保存有母岩的岩屑和晶屑,而形成碎斑结构。

假玄武玻璃是岩石在高应变速率(由地震或冲击作用引起)下,沿断面快速滑动所形成的一种特殊的构造岩。Spray(1995)对花岗岩快速滑动导致熔融的实验研究结果表明,假玄武玻璃的变形过程是:当初始破裂发生时,岩石先形成粗大碎块,而没有熔融现象;随后,磨碎作用使碎块粒度逐渐减小,引起碎块表面积(能)急剧增加(可达3000多倍);当磨碎作用达到临界应变速率时,由破裂和弹性应变产生的热量超过系统散发的热量,熔融作用开始发生。熔融产生后,一方面其润滑作用使摩擦阻力减小,另一方面流体的注入等使正应力减小,此时,断层的滑动速度达到最大值,但同时这也降低了生成热,使熔体冷凝,假玄武玻璃形成。形成后,使滑动阻力和断面剪切强度再次增大,滑动速度减慢至停止。经过应变积累,断层再次活动。这样多次重复,形成地震断层的脉动性质。由此,他认为磨碎是熔融的必要前提,二者是假玄武玻璃形成过程中的不同阶段。

假玄武玻璃主要是地震滑动的产物,可分布于整个地震带。因此,假玄武玻璃可形成于地壳浅部(<12km)的弹-脆性变形机制下,也可形成于较深部位(12~18km)的晶体塑性变形环境下,即在韧性剪切带的糜棱岩中也可出现假玄武玻璃,如苏格兰西北的莫因断层(Sibson,1980)、桐柏地区韧性剪切带(翟淳,1988)及广东河台韧性剪切带(何绍勋等,1996)中已发现假玄武玻璃和糜棱岩伴生。二者的共存充分说明岩石变形时处于典型的脆-韧性转变状态。但不同深度假玄武玻璃的结构不同,含气孔、杏仁构造的形成深度<1.6km,非晶质形成深度<6km,微晶结构的假玄武玻璃形成于8~18km。

假玄武玻璃还可以出现在大型滑坡的底部或陨石冲击变形中(Blenkinsop,2000;照片5-018)。在冲击变形中,常常伴随出现有高压显微构造现象(出现在冲击时,有冲击玻璃diaplectic glass、焦石英lechatelierite、高压石英多形变体柯石英coesite和斯石英stish-ovite等)和低压显微构造现象(出现在冲击后,如裂隙fractures、面状变形构造planar deformation features-PDFs、镶嵌化现象mosaicism)等。上述现象也是很好的温压指示计(详见第六章)。

张进江和郑亚东(1995a)及张桂林(1997)等对假玄武玻璃的化学成分进行了研究总结。研究发现,假玄武玻璃的全岩化学分析与紧邻的母岩一致,而且REE和某些痕量元素含量也变化不大,说明假玄武玻璃是母岩及碎裂岩原地熔融形成的。但熔融的基质部分与全岩之间存在明显差异,最显著的特征是熔融部分的SiO2含量少于围岩,而Al2O3,Fe2O3,FeO2,TiO2,MnO2,MgO,CaO,K2O等则相对增加。因此石英、长石等是围岩中不易熔融的矿物(碱性长石则较易熔融),而层状硅酸盐和角闪石及铁镁质矿物等则相对容易熔融。假玄武玻璃中矿物优先熔融的顺序是:层状硅酸盐(如黑云母)、链状硅酸盐(其中闪石类易于辉石类)、架状硅酸盐(如长石类)、正硅酸盐(如石英)。这一熔融顺序是由矿物的剪切屈服强度(低)、抗破裂强度(高)和热传导率(高)等物理性质所决定的(优先熔融),与正常岩浆岩的熔融顺序正好相反。上述熔融顺序也很好地解释了假玄武玻璃中云母碎块少而石英碎块较常见的现象。

四、糜棱岩系列糜棱岩(mylonite)最早是由Lapworth于1885年描述苏格兰高地莫因断层中的岩石时首先提出来的。他认为糜棱岩是一种细粒的具有强烈面理化的岩石,是在脆性破碎和研磨作用下形成的,不伴有组分的重结晶作用。后来Christie(1960)虽然发现莫因断层中的糜棱岩普遍发育重结晶现象,但却没有打破糜棱岩为脆性变形产物的观点,认为是后构造重结晶所致。直到20世纪60年代后,金属学位错理论在构造地质学中得到广泛应用,同时,透射电子显微镜分析技术揭示出岩石变形机制的一系列新证据。进而使得人们对糜棱岩的显微构造、组构等特征及成因机制等有了新的认识,即充分认识到晶质塑性变形在糜棱岩形成与演化中的重要地位。1981年在美国召开的彭罗斯国际会议上,对糜棱岩的显微构造、变形机制、形成条件及命名原则等广泛地进行了讨论,普遍认为糜棱岩的三个基本特征是:①粒度减小;②出现在较窄的带内;③具增强的面理和线理。

随着研究的深入,人们发现第一个特征即粒度减小并不完全适合所有具糜棱岩特征的构造岩。如对隐晶质碳酸盐岩来说,韧性剪切变形的结果粒度不仅没有减小却因重结晶作用反而有明显的加大现象。因此,又有人提出上述条件只适用于结晶岩及花岗岩。但糜棱岩的最主要特征是矿物经受了塑性变形,并由塑性变形导致了明显的重结晶及强烈的优选方位则是普遍共识。

最典型的糜棱岩发育于遭受绿片岩相条件下剪切变形改造的花岗质岩石。依据岩石中变形碎斑和基质的含量、性质及结构等,可分为糜棱岩化岩石、初糜棱岩(protomylo-nite)、糜棱岩(mylonite)和超糜棱岩(ultramylonite)。与碎裂岩系列岩石变化规律一致,糜棱状岩石由糜棱岩化岩石向超糜棱岩的演化也正是岩石应变程度由低向高的反映。

(1)糜棱岩化××岩:岩石初具糜棱结构,基质含量<10%,碎斑占大多数,可见矿物定向拉长现象。常见的显微构造现象有:波状消光,机械双晶及双晶弯曲,扭折等,在残斑边缘可见少量动态重结晶新晶粒(如照片5-043)。

(2)初糜棱岩(Protomylonite):岩石具糜棱结构。残斑粒径较大,多呈不规则状,眼球状或透镜状,趋于定向排列。基质占10%~50%,动态重结晶新晶粒逐渐增多。残斑中可见脆性破裂及各种具塑性或半塑性变形特征的显微构造,如长石机械双晶及扭折、云母扭折、方解石机械双晶,石英波状消光及消光带等。石英还常发育核幔构造。有些眼球状初糜棱岩具有S-C面理构造(如照片5-044)。

(3)糜棱岩(mylonite):岩石具典型的糜棱结构,基质含量为50%~90%,以动态重结晶新晶粒为至,残斑逐渐减少且粒径变小。流动构造明显,不仅具纹层状透入性面理,而且常发育明显的矿物线理。残斑和基质常构成不对称碎斑系,初糜棱岩中所具有的各种显微构造更为发育(如照片5-045)。

(4)超糜棱岩(ultramylonite):岩石发生糜棱岩化的高级阶段产物,具糜棱结构,残斑少见,基质90%以上,大部分矿物已经动态重结晶细粒化,呈纹层状分布肉眼观察岩石致密,色深,具明显的流动构造(如照片5-046)。

按照原岩类型,糜棱岩还可以分为:钙质糜棱岩、长英质(花岗质)糜棱岩、角闪质糜棱岩、辉长质糜棱岩、橄榄质糜棱岩等。钙质糜棱岩中,大理岩糜棱岩变形程度由弱到强见照片5-027~5-030;灰岩糜棱岩见照片5-031;长英质糜棱岩从手标本到薄片变形程度由弱到强见照片5-032~5-037;在低绿片岩相条件下变形程度由弱到强见照片5-038~5-042;在高绿片岩相条件下变形特征见照片5-043~5-046;在低角闪岩相条件下变形特征见照片5-047~5-052;在高角闪岩—麻粒岩相条件下变形特征见照片5-053~5-058。角闪质糜棱岩在绿片岩相条件下变形特征见照片5-059~5-062;在低角闪岩相条件下变形特征见照片5-063~5-068;在高角闪岩—麻粒岩相条件下变形特征见照片5-069~5-076。辉长质糜棱岩见照片5-077~5-081。橄榄质糜棱岩见照片5-082~5-086。它们在不同的变质条件下发生不同的变形。如长英质糜棱岩在低绿片岩相到麻粒岩相不同的变质条件下,矿物变形特征就十分不同。其中,高角闪岩相至麻粒岩相条件下的糜棱岩因变形的强弱不再表现为残斑数量的多少,而且像旋转应变组构、S-C组构和残斑组构等也不发育,它们与围岩的区别仅仅是片麻理定向更为强烈;因此这一类岩石常常被称为构造片麻岩(照片5-053~5-058)。何绍勋等(1996)认为这类构造岩主要是在高温条件下,矿物以晶体生长为主形成的,在地壳中深部层次由强烈塑性流动变形地区常常可见。

在构造变形期后,如果构造岩所处的温压环境较高,动态重结晶的新晶矿物就会发生显著的静态恢复重结晶及生长作用,矩形状或板状、扁平状、颗粒粒径趋于变粗,有时可见残斑与后生长的变斑晶共存,形成变余糜棱岩(blastomylonite,又称变晶糜棱岩,照片5-087~5-091)。其特点是岩石具变余的糜棱结构,或者静态重结晶及生长作用使糜棱结构破坏,在外貌上与区域变质片岩或片麻岩相似,此时就要仔细寻找那些变余的糜棱结构加以区分。变余糜棱岩具有明显的透入性面理,如果岩石的颗粒50%以上因静态重结晶作用而增大到肉眼能辨认,则根据其面理发育特点,分别称为构造片岩或构造片麻岩。

五、高压—超高压构造岩近年来许多学者充分注意到非正常构造层次及超高压变质糜棱岩的研究(索书田等,1997;赵中岩等,2002;Zhao et al.,2002,2003,2005;许志琴等,2003)。含柯石英和金刚石的超高压变质岩在大陆碰撞造山带的发现是20世纪晚期固体地球科学的重要进展之一。它表明不仅大洋壳可以俯冲到上地幔的深度,而且相对密度较小的大陆壳也可以俯冲到上地幔深度并且折返回地面。在大陆深俯冲和折返过程中,陆壳岩石在上地幔深度超高压变质条件下形成,并经历了长距离的构造搬运和多期次构造变形。超高压变质岩构造记录了其变质与变形的历史,对研究大陆深俯冲和折返过程以及大陆壳在这一过程中的流变学行为有重要的意义。

在超高压变质条件下,陆壳的主要造岩矿物:如石英、长石、云母、角闪石和辉石等,转变为柯石英、石榴子石、绿辉石/硬玉、蓝晶石和多硅白云母等在上地幔环境下稳定的超高压变质矿物。研究这些超高压变质矿物的变形机制和显微构造特征是深入了解其流变学行为的关键。在过去的二十年,尽管构造地质学工作者在已经发现的超高压变质带开展了大量的构造研究,却未找到超高压变形构造(Henry et al.,1993;Hacker et al.,2000;Renner et al.,2001;St?ckhert,2002)。而在超高压变质岩中发现了许多原生岩浆岩和火山岩构造(Zhang and Liu,1997;Bruno et al.,2001;Oberh?nsli et al.,2002)。据此,有的研究人员提出在深俯冲带内,应力强度较低,只有几个兆帕(MPa),小于位错蠕变所需的应力强度(St?ckhert和Renner,1998;St?ckhert,2002)。我国地质工作者在苏鲁超高压变质带的仰口地区首次发现了超高压韧性剪切构造岩,并开展了详细的工作,揭示了在超高压变质条件下,位错蠕变仍然是矿物和岩石的主要变形机制,并指出在大陆深俯冲带内应力强度应在几十个兆帕以上(赵中岩等,2002;Zhao et al.,2005),而高应变主要集中在韧性剪切带内(Zhao et al.,2003,2005;方爱民和赵中岩,2004)。

榴辉岩构造岩的变形强弱仍然可以通过绿辉石等矿物定向的强弱来反映(照片5-092~5-094)。其中,柯石英榴辉岩是典型的超高压变质岩,主要由石榴子石、绿辉石、蓝晶石和多硅白云母组成。榴辉岩糜棱岩(照片5-095,5-096)中,在弱变形情况下,绿辉石、蓝晶石和多硅白云母的长轴定向排列构成明显的形态组构,矿物不发生细粒化,有波状消光。绿辉石颗粒的边界在平行长轴的方向常有压溶坑(照片5-097)。绿辉石和多硅白云母颗粒之间常有“切削”接触关系(照片5-098),表明压溶是一个重要的变形机制。柯石英常呈包裹体保存在其他矿物中,具有波状消光和贝壳状裂纹,表明其变形发生在脆-韧转换域。在强变形的剪切带内,绿辉石和多硅白云母由于动态重结晶作用都发生了不同程度的细粒化(照片5-099)。绿辉石除了少量残斑保存了核-幔结构(照片3-113),大部分重结晶成10~20μm的颗粒。重结晶颗粒的长轴定向排列与面理平行,平行长轴的边界平直,指示亚晶粒旋转是主要动态重结晶机制;而与面理呈高角度的颗粒短轴边界常呈锯齿状,指示边界迁移是重要的动态重结晶机制。

六、叠加构造岩强烈变形地区,尤其是早前寒武纪深变质岩区,往往经历了多期次和多阶段的变形与变质作用的改造。早期形成的构造岩往往经历了不同程度的叠加改造,或是不同时期不同期次变形的叠加与改造,或是递进变形作用过程中不同阶段变形作用的结果。叠加改造一方面表现为构造变形带之间构造形迹的相互叠加与复合,另一方面表现为构造岩之间的相互叠加与复合,同时在断裂带中的构造岩多期变形及叠加现象非常普遍(胡玲,1998)。常常存在的变形叠加有:退变质和(或)变形叠加、同变质变形叠加和进变质和(或)变形叠加。其中退变质和(或)变形叠加是最为常见的叠加现象,也是一条断裂在地壳不断抬升演化过程中遭受降温降压及变形改造的结果。

退变质(retrogressive metamorphism)和(或)变形叠加现象主要表现为中高级变质相的糜棱岩为晚期中低级变质相的变形所叠加改造(照片5-100~5-104);或糜棱岩为后期脆性破碎的碎裂岩改造,成为碎裂岩的角砾或碎斑(照片5-105,5-106)。事实上,退变质和(或)变形叠加现象也大致反映了一条韧性剪切带完整的形成和演化的过程。据傅昭仁等(1996)研究,剪切带的演化过程大约有这样三个阶段:韧性断层形成期、脆-韧性断层叠加期及脆性断层改造期。

同变质(synmetamorphism)变形叠加主要表现为在地壳浅部以碎裂为主的两次或多次脆性破碎形成的断层泥(照片5-107~5-111)或碎裂岩(照片5-112~5-114)、假玄武玻璃的叠加(照片5-115~5-117),多期岩脉(照片5-118),多期压溶缝合线(照片5-119),多期面理的叠加等(照片5-120~5-122)。

进变质(progressive metamorphism)和(或)变形叠加一般情况下不容易被保存,只有进变质和(或)变形作用不均匀或不完全时,才可被观察到。如内蒙古色尔腾山地区花岗绿岩带的韧性剪切带糜棱岩在经历了低角闪岩相区域变质及绿帘角闪岩相退变质变形之后,发生了不均匀升温进变质重结晶作用(胡玲等,2006;照片5-090,5-123,5-124)。单纯的进变质叠加现象如碎裂岩受到岩浆热等的影响碎基重结晶定向而碎斑及裂隙仍被保留等(照片5-125,5-126);进变质变形的叠加现象如灰岩的糜棱岩化是隐晶质方解石结晶增大,灰岩常常因杂质含量不同而呈条带状,在韧性变形过程中,杂质含量相对较少的层内方解石结晶粒度偏大,从而使得灰岩糜棱岩化也呈似层状或条带状(照片5-031)。Gilotti(1998)曾报道过瑞士境内新元古代长石杂砂岩中发育的糜棱岩化进变质变形现象。

观察和分析构造岩的叠加特征叠加期次同分析构造形迹之间的叠加具有同等重要的意义。它不仅有助于正确了解和认识微观构造特征,更能为宏观变形及构造演化史提供更直接可靠的依据。




构造岩类型有哪些?视频

相关评论:
  • 15337296751岩浆岩的主要构造类型
    闵琼品1. 块状构造 块状构造(massive structure)是指在岩浆岩中,矿物均匀分布,无特定排列方向,是此类岩石中最普遍的构造类型。2. 斑杂构造 斑杂构造(taxitic structure)描述的是岩石中结构和成分的显著差异,表现为暗色矿物区域与浅色矿物区域交错,形成斑驳的外观。这种构造可能由不均匀岩浆分异或岩浆与...

  • 15337296751含矿断裂内构造岩岩石学特征
    闵琼品根据构造变形程度的不同,可以将庞西垌-金山断裂带内的构造岩区分出各种类型的构造岩。1.初碎裂岩 岩石基本保留了未变形原岩的结构和构造特征。在显微镜下观察,长石矿物有裂纹,石英矿物有拉长、压扁现象,具波状消光。岩石碎块之间没有或很少位移。根据原岩的不同可以进一步区分为碎裂状混合岩和碎裂状...

  • 15337296751三种不同沉积岩构造类型
    闵琼品3、变质岩:地壳中的原岩(包括岩浆岩、沉积岩和已经生成的变质岩),由于地壳运动、岩浆活动等所造成的物理和化学条件的变化,即在高温、高压和化学性活泼的物质(水气、各种挥发性气体和热水溶液)渗入的作用下,在固体状态下改变了原来岩石的结构、构造甚至矿物成分,形成一种新的岩石称为变质岩。变质岩不仅...

  • 15337296751岩浆岩的主要构造类型
    闵琼品原生节理与流动构造密切相关。根据原生节理与流动构造的关系,可将原生节理分为以下三种主要类型(图1-13):◎L节理:亦称层节理。平行于流面方向,一般与接触面平行。层节理面常较平滑,可以被一些岩脉或矿脉充填。◎Q节理:亦称横节理。与流线方向垂直。这种节理直而长,节理面粗糙,常充填岩脉和矿脉...

  • 15337296751地质构造5种类型是什么?
    闵琼品地质构造只有褶皱、节理、断层三种基本类型。地质构造是指在地球的内、外应力作用下,岩层或岩体发生变形或位移而遗留下来的形态。一、褶皱:分为背斜和向斜 1、背斜:岩层向上弯曲、中心部位岩层较老,两侧岩层依次变新。2、向斜:岩层向下弯曲,中心部位岩层较新,两侧岩层依次变老。若褶皱的岩层上升到...

  • 15337296751岩石分类除了岩浆岩、变质岩和沉积岩还有哪些类型
    闵琼品首先分三大类岩浆岩(火成岩)、变质岩、沉积岩。岩浆岩根据SiO2的含量分为超基性岩、基性岩、中性岩和酸性岩、碱性岩,再按产状、结构构造分为深成岩、浅成岩和喷出岩。变质岩分为动力变质岩、区域变质岩、混合岩、热接触变质岩、气-液变质形成的岩石。动力变质岩主要有构造角砾岩、碎屑岩、千糜岩、假熔岩。

  • 15337296751地质构造类型有哪些
    闵琼品地质构造类型主要有以下几种:一、岩浆构造。这是指由岩浆活动所形成的各种地质构造类型。岩浆活动包括岩浆的侵入和喷出活动,这些活动会形成各种岩浆岩,如花岗岩、橄榄岩等。岩浆构造进一步可分为侵入岩构造和喷出岩构造两大类。侵入岩构造通常呈现为各种侵入体的形态,如岩基、岩株等;而喷出岩构造则表...

  • 15337296751岩石结构有哪些
    闵琼品经过一定的地质作用形成的。火山岩,如玄武岩等,通常具有这种特殊的火山结构。这种结构的岩石常常含有气孔、杏仁构造等特征。以上即为岩石结构的四种主要类型,每种类型都有其独特的特征和形成过程。通过对岩石结构的观察和研究,可以了解地壳的形成和演化过程,为地质学研究提供重要依据。

  • 15337296751变质岩与岩浆岩的区别和联系是什么
    闵琼品3. 变质岩主要由内部力量作用形成,除了保留原岩的矿物核心外,还含有典型的变质矿物,例如绢云母、石榴子石等。变质岩的特征包括变晶结构、变余结构和压碎结构,它们的构造类型有片理、片麻理和块状等。变质岩的产状通常与原岩的产状保持一致,区域变质岩是最常见的类型,而接触变质岩和动力变质岩则相对较...

  • 15337296751三大类岩石在成岩作用、矿物组成、结构构造方面的特点
    闵琼品一、岩浆岩 1. 成岩作用:岩浆岩形成于岩浆的活动,包括喷出作用和侵入作用。2. 矿物组成:主要由硅铝矿物和铁镁矿物构成。3. 结构构造特点:岩浆岩分为侵入岩和喷出岩。喷出岩在快速冷却过程中形成气孔状构造。侵入岩与周围岩石界限明显,具有不同的结晶度和纹理。二、沉积岩 1. 成岩作用:沉积岩...

  • 相关主题精彩

    版权声明:本网站为非赢利性站点,内容来自于网络投稿和网络,若有相关事宜,请联系管理员

    Copyright © 喜物网